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Theory of many-fermion systems. II. The case of Coulomb interactions
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In a recent paper a general field-theoretical description of many-fermion systems with short-range interac-
tions has been developed. Here we extend this theory to the case of disordered electrons interacting via a
Coulomb potential. A detailed discussion is given of the Ward identity that controls the soft modes in the
system, and the generalized nonlinears model for the Coulombic case is derived and discussed.
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I. INTRODUCTION

The theory of many-fermion systems is central to our u
derstanding of condensed matter, as well as of nuclei
certain astrophysical systems. Of particular interest in
condensed-matter context are the universal properties
many-electron systems, i.e., phenomena at long wavele
and small-frequency scales that are independent of the m
rial’s detailed microscopic structure. Historically, there ha
been two important avenues to this problem: Landau’s p
nomenological Fermi-liquid theory,1 and the microscopic
many-body perturbation theory or Feynman diagr
approach.2 The latter soon was generalized to include t
scattering of electrons by static impurities,3 and it has led to
many important insights concerning the nature of interact
disordered electron systems. For instance, it was use
show that the combined effects of disorder and interacti
lead to the nonanalyticities in the frequency and wa
number dependence of both thermodynamic and trans
properties of disordered metals that have become know
‘‘weak-localization effects.’’4,5

There are, however, many interesting phenomena
which an approach based on many-body perturbation the
is not feasible. An example is the Anderson-Mott met
insulator transition that the electrons undergo with increas
disorder strength.6 This quantum phase transition is be
studied by means of effective field theories and the use of
renormalization group, an approach that was pioneered
Wegner.7 Also, many-body perturbation theory is ultimate
unsatisfactory as a tool even in the metallic phase, despit
impressive successes. One major problem is that, within
turbation theory, it is not clear whether the weak-localizat
effects are actually the leading nonanalyticities. Furtherm
universal phenomena such as the weak-localization eff
arise from the presence of soft modes in the problem, wh
many-body perturbation theory is not well suited to de
with. The softness or masslessness of these modes is
result of symmetries that are often not explicit in the us
perturbative formalism, and therefore soft modes arise ap
ently accidentally as a result of complicated cancellatio
rather than being manifestly built into the formalism. Final
it is unsatisfactory to have entirely different approaches
PRB 580163-1829/98/58~15!/9710~11!/$15.00
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the universal properties of the various phases on the
hand, and to those of the transitions between these phase
the other.

The concepts for overcoming these problems exist; t
consist of a systematic application of renormalization-gro
ideas. Historically, the renormalization group has be
mainly associated with critical phenomena at continuo
phase transitions, for which the importance of symmetr
and soft modes has been universally appreciated. Whil
has always been clear in principle and occasionally has b
emphasized8 that the renormalization group, rather than ju
being a tool for studying critical phenomena, allows for
unified description of both phases and phase transitio
these ideas have not been widely appreciated. Only very
cently has there been the beginning of a paradigm shif
this respect. For instance, starting with Shankar’s wor9

there has been much activity recently on the derivation
clean Fermi-liquid theory as a stable renormalization-gro
fixed point.10 These methods, however, have proven ve
hard to generalize to the case of quenched disorder.

In a previous paper, to be referred to as I,11 two of us have
developed an effective field theory for many-electron s
tems that is particularly suitable for dealing with disorder
systems. This theory, which is formulated in terms of clas
cal matrix fields, allows for a systematic separation of s
and massive modes, and the latter can be integrated out
simple approximation to yield an effective theory for the s
modes. The theory also allows for the clean limit to be tak
but the soft-mode structure in that case turns out to be m
complex, which gives the effective theory fewer advantag
over traditional approaches than is the case in the presen
disorder. This theory has been used,inter alia, to prove that
the well-known weak-localization effects are indeed t
leading nonanalyties, to provide a technically satisfact
derivation of Finkel’stein’s generalization12 of Wegner’s
nonlinear s model,7 and to derive a previously unknow
nonanalyticity in the spin susceptibility of clean Ferm
liquids.13,11

In I, the effective classical field theory was developed
fermions that interact via a short-range potential, assum
that the underlying Coulomb potential had been screene
the level of the basic fermionic theory. In the present pap
9710 © 1998 The American Physical Society
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we show how to handle a long-range interaction entir
within the framework of the classical matrix field theor
focussing on the disordered case. We give a detailed dis
sion of the Ward identity that controls the structure of t
soft modes, and we derive Finkel’stein’s generalized non
ears model12 for the Coulombic case.

The outline of our paper is as follows. In Sec. II we rec
the matrix field theory of I, and generalize it slightly to allo
for a Coulomb interaction. We show that the saddle po
considered in I remains valid, and that an expansion ab
the saddle point to Gaussian order produces RPA-t
screening. In Sec. III we perform a symmetry analysis, a
derive and discuss the Ward identity that controls the s
modes in the system. In Sec. IV we show that integrating
the massive modes in the simplest approximation that
spects the Ward identity leads to Finkel’stein’s model.
Sec. V we conclude by discussing our results, and give
particular, a discussion of the accuracy of thes model.

II. MATRIX FIELD THEORY

A. Grassmannian field theory

Our model and basic theoretical setup is the same as
We will therefore restrict ourselves to discussing the chan
that are necessary to accomodate a Coulomb interaction

The action is given by

S52E dx(
s

c̄s~x!]tcs~x!1S01Sdis1Sint .

~2.1a!

Here thec̄ andc are Grassmann valued fields, and we us
(d11)-vector notation, with x5(x,t), and *dx
5*Vdx*0

bdt. x denotes position,t imaginary time,V the
system volume,b51/T the inverse temperature,s the spin
label; and we use units such that\5kB5e251. S0 ~together
with the time derivative term! andSdis describe free fermions
and their interaction with a static random potential, resp
tively, and have been defined in I. The random potential
assume to be Gaussian distributed, and we employ the
lica trick to handle it.Sint describes a Coulomb interaction
which in the replicated theory~which we denote by a tilde!
takes the form

S̃int5(
a

S̃int
a 52

1

2(a E dx1dx2 (
s1 ,s2

v~x12x2!

3d~t12t2!c̄s1

a ~x1!c̄s2

a ~x2!cs2

a ~x2!cs1

a ~x1!.

~2.1b!

Herea is the replica index, and

v~x!51/uxu ~2.1c!

is the Coulomb potential. For the dimensionalities of intere
d52,3, its Fourier transform is

v~q!5~12dq,0!
2d21p

uqud21
, ~2.1d!

where the factor 12dq,0 represents a uniform positive bac
ground charge that ensures charge neutrality.
y
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We now introduce a momentum cutoffl, and rewrite the
interacting part of the action as

S̃int
a 5S̃int

a ~1!1S̃int
a ~2!1S̃int

a ~3! , ~2.2a!

where

S̃int
a ~1!52

T

2 (
s1s2

(
k,p

(
q

8 v~q!c̄s1

a ~k!c̄s2

a ~p1q!

3cs2

a ~p!cs1

a ~k1q!, ~2.2b!

S̃int
a ~2!52

T

2 (
s1s2

(
k,p

(
q

8 v~p2k!Q~ up2ku2l!

3c̄s1

a ~k!c̄s2

a ~p1q!cs2

a ~k1q!cs1

a ~p!, ~2.2c!

S̃int
a ~3!52

T

2 (
s1Þs2

(
k,p

(
q

8 v~k1p!Q~ up1ku2l!

3c̄s1

a ~2k!c̄s2

a ~k1q!cs2

a ~2p1q!cs1

a ~p!.

~2.2d!

As in real space, we use a (d11)-vector notation withk
5(k,vn), wherevn52pT(n11/2) is a fermionic Matsub-
ara frequency. The prime on theq summation indicates tha
only momenta up to the momentum cutoffl are integrated
over. While the long-wavelength, small-frequency pheno
ena we are interested in do not in general depend onl, the
choice of this cutoff will be important for the range of valid
ity of the final effective theory. We will come back to thi
point in Secs. III and V below. Equations~2.2! represent the
same phase-space decomposition as in Eqs.~2.8! of I, except
that we have explicitly inserted the step functions in E
~2.2c,2.2d!, because the small-wave-number part ofv is al-
ready contained in Eq.~2.2b!. In I the overcounting that re-
sulted from not having the step functions explicitly prese
was of no consequence, sincev in that case was not singula
in the small-wave-number limit. For a Coulomb interactio
more care must be taken.

We next introduce spinors

cn
a~x!5S cn↑

a ~x!

cn↓
a ~x!

D , ~2.3a!

and their Fourier transforms

ca~k![cn
a~k!5S cn↑

a ~k!

cn↓
a ~k!

D , ~2.3b!

as well as their adjoints,c̄a(k), and a scalar product in
spinor space, (c,c)5c̄•c, where the dot denotes the matr
product. Then we can write the interaction term as

S̃int
a 5S̃int

a~s!1S̃int
a ~ t !1S̃int

a ~3!, ~2.4a!

with
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S̃int
a ~s!52

T

2(k,p
(

q
8 Gk,p

~s! ~q!„ca~k!,s0ca~k1q!…

3„ca~p1q!,s0ca~p!…, ~2.4b!

S̃int
a ~ t !52

T

2(k,p
(

q
8 Gk,p

~ t ! ~q!(
i 51

3

„ca~k!,sic
a~k1q!…

3„ca~p1q!,sic
a~p!…. ~2.4c!

Here sj5 is j , with s1,2,3 the Pauli matrices, ands05s0 is
the 232 identity matrix. We have also defined the singlet~s!
and triplet~t! interaction amplitudes

Gk,p
~ t ! ~q!5 1

2 v~p2k! Q~ up2ku2l!, ~2.5a!

and

Gk,p
~s! ~q!5v~q!2Gk,p

~ t ! ~q!. ~2.5b!

In addition we define the Cooper channel or 2kF-scattering
amplitude,

Gk,p
~c! ~q!5v~k1p!Q~ up1ku2l!. ~2.5c!

These expressions are the same as the corresponding o
I, with the exception of the momentum restrictions in t
effective interaction potentialsGk,p

(s,t,c) discussed above. Nex
we project the modes inSint onto density modes in the
particle-hole and particle-particle channels that were defi
in I. The result of this procedure, which was explained
Appendix A of I, is

S̃int
a ~s!52

T

2(k,p
(

q
8 G~s!~q!„ca~k!,s0ca~k1q!…

3„ca~p1q!,s0ca~p!…, ~2.6a!

S̃int
a ~ t !52

T

2
G~ t !(

k,p
(

q
8 (

i 51

3

„ca~k!,sic
a~k1q!…

3„ca~p1q!,sic
a~p!…, ~2.6b!

S̃int
a ~3!52

T

2
G~c! (

s1Þs2
(
k,p

(
q

8 c̄s1

a ~k!c̄s2

a ~2k1q!

3cs2

a ~p1q!cs1

a ~2p!. ~2.6c!

Here

G~s!~q!5v~q!2G~ t !, ~2.6d!

and G (t) and G (c) are numbers that result from integratin
over the wave vectors in Eqs.~2.5! as explained in Appendix
A of I. Notice that as a result of this procedure,G (t) andG (c)

for clean electrons depend logarithmically on the cutoffl,
and diverge asl→0. For the disordered case, the logarit
mic singularity is protected both byl and by the disorder
This singularity, which is a consequence of the Coulo
interaction, is the reason for our modification of the proc
dure employed in I.
s in

d

b
-

B. Composite variables: matrix field theory

After completing the phase-space decomposition and p
jecting onto densities we are in a position to reformulate
theory in terms of composite variables. This proceeds in
act analogy to I, and we therefore only quote the result. T
partition functionZ̃ for the replicated theory is written as a
integral with respect to two matrix fields,Q and L̃,

Z̃5E D@Q# D@L̃#eA[Q,L̃] , ~2.7!

with an effective action

A@Q,L̃#5Adis@Q#1Aint@Q#1 1
2 Tr ln~G0

212 i L̃ !

1E dx tr@L̃~x!Q~x!#. ~2.8!

The matrix fieldQ corresponds to expressions that are bil
ear in the fermionic fieldsc and c̄. Correspondingly,Q
carries two frequency indicesn andm, and two replica indi-
cesa andb. Each matrix elementQnm

ab is an element ofQ
3Q, with Q the quaternion field.L̃ is an auxiliary field the
technical role of which is to constrain the products of ferm
onic fields to theQ. It is convenient to expand theQnm

ab in a
spin-quaternion basis,

Qnm
ab5 (

r ,i 50

4

r
i Qnm

abt r ^ si , ~2.9!

and analogously forL̃. Here t05s0512 with 12 the 232
unit matrix, andt j52sj52 is j ( j 51,2,3), where thes j

are the Pauli matrices. The properties ofQ andL̃ have been
derived in I, and for completeness we list them again
Appendix A. In Eq.~2.8! and in what follows, Tr is a trace
over all degrees of freedom, including an integral overx,
while tr is a trace over all discrete degrees of freedom t
are not shown explicitly.

G0
2152]t1¹2/2m1m, ~2.10!

is the inverse of the free-electron Green operator, and
clear from the structure of the Tr ln term in Eq.~2.8! that the
physical interpretation of the fieldL̃ is that of a self-energy.
The contributionsAdis andAint to the action read

Adis@Q#5Adis
~1!@Q#1Adis

~2!@Q#, ~2.11a!

Adis
~1!@Q#5

21

2pNFt1
E dx@ tr Q~x!#2, ~2.11b!

Adis
~2!@Q#5

1

pNFt rel
E dx tr@Q~x!#2, ~2.11c!

with t rel the single-particle relaxation time andt1 a related
scattering time defined in I, and

Aint@Q#5Aint
~s!1Aint

~ t !1Aint
~c! , ~2.12a!
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Aint
~s!5

T

2E dx dy (
r 50,3

~21!r (
n1 ,n2 ,m

(
a

G~s!~x2y!

3$tr@~t r ^ s0!Qn1 ,n11m
aa ~x!#%

3$tr@~t r ^ s0!Qn21m,n2

aa ~y!#%, ~2.12b!

Aint
~ t !5

TG~ t !

2 E dx (
r 50,3

~21!r (
n1 ,n2 ,m

(
a

3(
i 51

3

$tr@~t r ^ si !Qn1 ,n11m
aa ~x!#%

3$tr@~t r ^ si !Qn21m,n2

aa ~x!#%, ~2.12c!

Aint
~c!5

TG~c!

2 E dx (
r 51,2

(
n1 ,n2 ,m

3(
a

$tr@~t r ^ s0!Qn1 ,2n11m
aa ~x!#%

3$tr@~t r ^ s0!Q2n2 ,n21m
aa ~x!#%. ~2.12d!

HereNF is the density of states at the Fermi level in sadd
point approximation, as defined in Eq.~2.13c! below. We
have written the action in real space, but one should rem
ber that all of the fields are restricted to Fourier compone
with wave numbersuku,l.

C. Saddle-point solution, Gaussian approximation,
and physical correlation functions

It is easy to see that the Fermi-liquid saddle-point d
cussed in I remains a valid saddle-point in the presence
long-range interaction, withG (s) in I replaced byG (s)(q
50). The single-particle Green function in saddle-point a
proximation is therefore given by the same expression a
I, viz.,

Gsp~p,vn!5@ ivn2p2/2m1m2Sn#21, ~2.13a!

with m the chemical potential, and the self-energyS the
solution of the equation

Sn5
1

pNFt rel

1

V (
p

@ ivn2p2/2m1m2Sn#21

12G~s!~q50!T(
m

eivm0
1

V

3(
p

@ ivm2p2/2m1m2Sm#21. ~2.13b!

This is the standard Hartree-Fock result, with the disor
treated in the self-consistent Born approximation;

NF5
22

p

1

V (
p

Im Gsp~p,ivn→ i0! ~2.13c!

is the density of states at the Fermi level in saddle-po
approximation, which is used for normalization purpos
throughout.
-

-
ts

-
a

-
in

r

t
s

Similarly, in an expansion about the saddle-point
Gaussian order, all of the expressions derived in I rem
valid if we substituteG (s)(p) for G (s) in all propagators taken
at wave vectorp. In particular, we obtain for the low-
frequency, long-wavelength limit of the density susceptib
ity x in the disordered case,

x~p,Vn!5xst~p!
d~p!p2

uVnu1d~p!p2
. ~2.14a!

HereVn is a bosonic Matsubara frequency,

xst~p!5
2NF

11NFG~s!~p!
, ~2.14b!

is the static density susceptibility, and

d~p!5D@11NFG~s!~p!#, ~2.14c!

with D the Boltzmann diffusion coefficient. In the clean lim
we obtain the usual RPA expression,

x~p,Vn!5
x0~p,Vn!

11G~s!~p!x0~p,Vn!
, ~2.15!

with x0 the Lindhard function. We see that in Gaussian a
proximation, the field theory describes screening, and
existence of plasmons, in RPA and its disordered genera
tion, respectively.

III. SYMMETRY ANALYSIS

From Sec. II C it follows, in conjunction with I, that at th
level of the Gaussian approximation theQnm with nm,0
are soft modes. In this section, we perform a symme
analysis in order to show that they are indeed the exact
modes of the theory. This will allow us to explicitly separa
the soft modes from the massive ones, and to formulate
effective field theory for which the soft modes remain ma
festly soft to all orders in perturbation theory.

A. Basic transformation properties, and Ward identity

Let us start with a symmetry analysis of our field theo
that is a slight generalization of the procedure followed in
which in turn was a generalization of the work on noninte
acting electrons by Scha¨fer and Wegner, and Pruisken an
Schäfer.14 We consider an infinitesimal simultaneous rot
tion in frequency and replica space given by

r
i T̂nm

ab5d i0d r0@daa1
dnn1

dba2
dmn2

2daa2
dnn2

dba1
dmn1

#u

[d i0d r0 t̂ nm
ab1O~u2!, ~3.1!

which transforms theQ matrices according toQ→TQT21,
with T5CT̂CT, where C5 i t1^ s2 . (n1.0,n2,0) and
(a1 ,a2) are fixed pairs of frequency and replica indices th
characterize the transformation. Under such an infinitesi
rotation, theQ matrices transform like

Qnm
ab→Qnm

ab1dQnm
ab , ~3.2a!

with
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dQnm
ab5@daa1

dnn1
Qn2m

a2b
1dba1

dmn1
Qnn2

aa22~1↔2!#u

1O~u2!. ~3.2b!

Here we have shown only the frequency and replica indic
since all other degrees of freedom are unaffected by
transformation. TheL̃ matrices transform accordingly. Th
symbol (1↔2) indicates the same terms as written pre
ously, but with the indices 1 and 2 interchanged.

Of the terms in the action, Eq.~2.8!, only Tr ln(G0
21

2iL̃) andAint are not invariant under the above transform
tion. Their transformation behaviors are easily determined
an explicit calculation. We find

Tr ln~G0
212 i L̃ !→Tr ln~G0

212 i L̃ !1u Tr~G d iv!,
~3.3a!

with G[(G0
212 i L̃)21, and

r
i ~d iv!nm

ab5d i0d r0~daa1
dnn1

dba2
dmn2

1daa2
dnn2

dba1
dmn1

!iVn12n2
, ~3.3b!

and

A int
~s!→A int

~s!1dA int
~s! , ~3.4a!

with

dA int
~s!532E dx dy G~s!~x2y! (

r 50,3
T

3 (
nanb

@ r
0Qnanb

a1a1~x!r
0Qn2 ,n22~na2nb!

a2a1 ~y!2~1↔2!#u.

~3.4b!

For our purposes, we concentrate on a discussion of
particle-hole spin-singlet interaction; the discussion of
remaining interaction channels proceeds analogously, b
less interesting since in these channels the interaction is s
range. Proceeding analogously to I, we obtain from
above transformation properties the Ward identity

Wint18Vn12n2
E dy^0

0Q12~y!0
0Q34~x!&

5d13d24~^0
0Q11~x!&2^0

0Q22~x!&!, ~3.5a!

where

Wint5232E dy dzG~s!~y2z! (
r 50,3

T

3 (
nanb

@^0
0Q34~x!r

0Qnanb

a1a1~y!r
0Qn2 ,n12~na2nb!

a2a1 ~z!&

2~1↔2!#. ~3.5b!

To simplify the notation we have adopted the convention
[(n1 ,a1). For the special case of a short-range interacti
G (s)(x2y)5G (s) d(x2y), we recover Eqs.~3.14! of I.
s,
e

-

-
y

he
e
is
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e

1
,

B. Solution of the Ward identity

We now solve the Ward identity by employing a meth
that is more transparent than the one used in I, and m
suitable for a generalization to the long-range case.

We first split up theQ-matrices into their averages an
fluctuations:Qnm5^Qnm&1(DQ)nm5dnm^Qnn&1(DQ)nm .
Sincen1Þn2 , and n3Þn4 , we have^Qn1n2

&5^Qn3n4
&50.

Furthermore, if we putna5nb in the three-point functions
then the expression in square brackets in Eq.~3.5b! vanishes
due to Eq.~A3a!, so effectively we also havêQnanb

&50.
Equation ~3.5a! then takes the form

Wint18Vn12n2
C12,345d13d24N12, ~3.6a!

where

C12,345E dy^0
0~DQ!12~y!0

0~DQ!34~x!&, ~3.6b!

and

N125^0
0Q11~x!&2^0

0Q22~x!&. ~3.6c!

Wint can be written as the sum of two terms,Wint5Wint
(1)

1Wint
(2) , with

Wint
~1!5232da1a2

G~s!~k→0!N12T

3 (
na ,nb

da1aa
da2b,122Cab,34, ~3.6d!

and

Wint
~2!5232 (

r 50,3
(

q
8 G~s!~q!T

3 (
nanb

@^ r
0~DQ!n1 ,n22~na2nb!

a1a2 ~2q!

3 r
0~DQ!nanb

a1a1~q!0
0~DQ!34~x!&2~1↔2!#,

~3.6e!

Here we have chosen a mixed representation forWint
(2) , with

someDQ in real space, and some in Fourier space, in or
to make the cutoff on theq integration explicit.

To proceed, let us ignoreWint
(2) for the time being. Its

effect will be analyzed later. Equation~3.6a! then turns into
a closed integral equation for the homogeneous correla
function C. At this point we note that our global symmetr
transformation, Eq.~3.1!, produces a Ward identity for ho
mogeneous correlation functions. For a short-range inte
tion, this is sufficient to capture the important structural
strictions imposed on the theory by the symmetry of t
action. However, in the long-range case the homogene
limit is singular, and we have to be more careful. For
stance, it is obvious that a local symmetry transformat
would generate a wave-number-dependentG (s) in Wint

(1) , and
in the long-range caseG (s)(k→0)ÞG (s)(k50). This is the
reason why we have writtenG (s)(k→0) in Eq. ~3.6d!. Fur-
thermore, it is known from perturbation theory that the d
persion of the soft modes that are controlled by the W
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identity is diffusive,V;k2.15 The equation for the wave
number-dependentC then takes the form

8~Vn12n2
1Dk2!C12,34~k!5d13d24N12~k!132G~s!~k!

3da1a2
N12~k!T

3(
ab

daaa1
d122,a2b Cab,34~k!,

~3.7!

with D the ~exact! diffusion constant, andN12(k) the wave-
vector-dependent generalization ofN12 as defined in Eq.
~3.6c!. It is useful to define

Pn~k!5T(
n1n2

dn,n12n2
Nn1n2

~k!. ~3.8a!

By performing appropriate summations over the Ward id
tity, we find that

Pn~k!5 1
4 ~Vn1Dk2!xsc~k,Vn!, ~3.8b!

with xsc the screened density susceptibility. The latter is
fined as

xsc~k,Vn!5
x~k,Vn!

11G~s!~k!x~k,Vn!
, ~3.8c!

where

x~k,Vn!532T(
1234

dn,n12n2
C12,34~k! ~3.8d!

is the full density susceptibility. Notice that this relation b
tweenPn andxsc is exact, sinceT(12dn,n12n2

W12,34
(2) 50.

The integral equation, Eq.~3.7!, can be solved in terms o
Pn or xsc by means of the same methods that were emplo
to discuss the GaussianQ-field theory in I. We find

C12,34~k!5 1
16 @d13d24D12~k!1d122,324da1a3

da1a2

32TG~s!~k!D12~k!D 34
~s!~k!#, ~3.9a!

where

D12~k!52N12~k!@Vn12n2
1Dk2#21, ~3.9b!

and

D 12
~s!~k!5D12~k!@12G~s!~k!xsc~k,Vn12n2

!#21 .
~3.9c!

To appreciate the difference between this structure and
analogous one in the short-range case, it is instructive
consider the limit of small wave numbers and frequenc
with Dk2!Vn12n2

. In this limit we have 2N12(k)

→p N(eF) with N(eF) the exact density of states at th
Fermi level, andxsc(k,Vn12n2

);k2/Vn12n2
. In d53, we

obtain
-

-

d

he
to
s

16C12,34~k→0!5d12d34

pN~eF!

Vn12n2

1d122,324da1a2
da1a3

pN~eF!2pT

Vn12n2
Dk2 .

~3.10!

We see that the long-range Coulomb interaction causes
part of C that is nondiagonal in frequency to diverge lik
T/V k2, rather than likeT/V2 in the short-range case. Thi
structure is responsible for the well-known log-squared ter
in the density of states and in the sound attenuation co
cient that appear in perturbative calculations of wea
localization effects in 2D systems with Coulom
interactions.6

We now consider the remaining contribution toWint ,
Wint

(2) . Without the restriction on the wave-number integral
Eq. ~3.6e!, one could relabel wave vectors to show thatWint

(2)

contains terms that have the same structure asWint
(1) . How-

ever, due to the cutoff contained in the definition of o
Q-field theory this is not the case, and we resort to pertur
tion theory to analyze the structure ofWint

(2) . By reexpressing
DQ in fermion fields, and using Wick’s theorem to write th
correlation function in Eq.~3.6e! in terms of Green func-
tions, we find

Wint
~2!;G~s!~k!

T

V
Min@l2,l2~l l !#, ~3.11!

with l the cutoff introduced in Sec. II A, andl the elastic
scattering mean free path. Based on this information, we n
choose the cutoff. There are three obvious possible choi
One can makel a fixed, small fraction of either the Ferm
wave numberkF , or the mean free pathl , or the screening
wave numberk. The first choice would not allow us to con
trol the terms inWint

(2) , and is therefore undesirable. Th
second choice is possible, but means foregoing the optio
take the clean limit, for reasons discussed after Eq.~2.6d!.
We therefore choose the third option, which makesWint

(2) of
higher order in the interaction than the other terms in
Ward identity. To linear order in the interaction the solutio
given above in Eqs.~3.9!, ~3.10!, is then exact. To highe
order, while Wint

(2) cannot make the modesQnm (nm,0)
massive, it will change the prefactors of the diffusive sing
larity at small frequencies and wave numbers. We concl
that an effective theory that respects Eqs.~3.9! will have the
correct soft-mode structure as it follows from the symme
of the action. It will further exactly reproduce perturbatio
theory to first order in the interaction. In Sec. IV we w
show that the generalized nonlinears model of Ref. 12 is an
effective theory with these properties.

C. Separation of soft and massive modes

From the previous subsection we know that the corre
tion functions of theQnm with nm,0 remain soft, while
those withnm.0 remain massive even in the presence
long-range interactions. Therefore the mode separation
this case is the same as it is for short-range interactions,
we can restrict ourselves to summarizing the results of I.

One consequence of the symmetry properties of theQ
matrices~see Appendix A! is that the set ofQ is isomorphic
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to the set of anti-Hermitian 8Nn38Nn matrices. As shown
in I, from this it follows that the most generalQ can be
written as a product,

Q5SPS21. ~3.12!

HereP is a matrix that is blockdiagonal in frequency spac

P5S P. 0

0 P,D , ~3.13!

with elementsP. (P,) for nm.0 (nm,0) that are iso-
morphic to the set of anti-Hermitian 4Nn34Nn matrices,
and S an element of the homogeneous spa
USp(8Nn,C)/USp(4Nn,C)3USp(4Nn,C), i.e., the set of all
cosets of USp(8Nn,C) with respect to USp(4Nn,C)
3USp(4Nn,C).16

This achieves the desired separation of our degree
freedom into soft and massive ones. The massive degre
freedom are represented by the matrixP, while the soft ones
are represented by the transformationsS
PUSp(8Nn,C)/USp(4Nn,C)3USp(4Nn,C).

In order to formulate the field theory in terms of the so
and massive modes, one also needs the invariant mea
I @P#, or the Jacobian of the transformation from theQ to the
P and theS, defined by

E D@Q# •••5E D@P# I @P#E D@S# •••. ~3.14!

We will not need the measure explicitly for our purpose
and refer to I, where it has been constructed in terms of
eigenvalues ofP.

IV. EFFECTIVE FIELD THEORY FOR DISORDERED
INTERACTING FERMIONS

Having achieved a separation of soft and massive mo
we are now in a position to formulate an effective theory
electrons with a long-range interaction that focuses on
soft modes. In the short-range case, this was done by
grating out the massive modes in tree approximation. T
led to the nonlinears model in I, and it was shown that thi
procedure preserves the structure of the Ward identity. A
result, thes model contains the same Fermi-liquid fixe
point, as well as the leading corrections to scaling near it
the underlying full model, and it also contains a critical fix
point that describes an Anderson-Mott metal-insulator tr
sition.

We cannot simply repeat this procedure for the pres
case of long-range interactions, since integrating out
massive modes in tree approximation would lead to a the
that violates the Ward identity. We therefore must treat
massive modes more carefully, and our aim is to find
simplest approximation that will still guarantee the corre
structure of the Ward identity, and hence lead to an effec
theory that has the correct symmetry.

The first steps are the same as in I: We define a tra
formed auxiliary fieldL by

L~x!5S21~x!L̃~x!S~x!, ~4.1a!
,
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and a new fieldQ̂ by

Q̂~x!5
4

pNF
S~x!^P&S21~x!. ~4.1b!

We then expand about the expectation values ofL andP,

P5^P&1DP, L5^L&1DL. ~4.2!

As explained in I, it is sufficient to replacêP& and ^L& by
the respective saddle-point values, and to further replace^P&
in the definition ofQ̂, Eq. ~4.1b!, by the simple approxima-
tion

^P&'
p

4
NFp, ~4.3a!

with

p125d12sgnvn1
. ~4.3b!

We mention that there is no obvious small parameter t
controls these approximations. Rather, they will be justifi
a posteriori by the fact that the resulting effective fiel
theory, the nonlinears model, respects the Ward identity
Eqs. ~3.9!, ~3.10!, that was derived in the previous sectio
This in turn shows that the approximations, Eqs.~4.3!, are
consistent with neglecting the termWint

(2) in the Ward iden-
tity, which itself is perturbatively controlled for small inter
action strengths. If the theory is renormalizable, this impl
that the effective theory resulting from the above approxim
tions will have the same structure as the full one, albeit w
different coefficients. We will come back to this point at th
end of this section, and in Sec. V below. With these appro
mations,Q̂ has the properties

Q̂2~x!51, Q̂†5Q̂ , Tr Q̂~x!50 , ~4.4a!

and can be parametrized by

Q̂5S A12qq† q

q† 2A12q†qD , ~4.4b!

where the matrixq has elementsqnm whose frequency labels
are restricted ton>0, m,0. S can also be expressed i
terms ofq,16

S5S A12bb† b

2b† A12b†bD , ~4.4c!

where

b~q,q†!5
21

2
q f~q†q!, ~4.4d!

with

f ~x!5A2

x
~12A12x!1/2. ~4.4e!

Unlike I, where we just dropped the fluctuations ofP andL,
here we next expand to second order inDP and DL. The
reason for this change of procedure compared to the sh
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range case is that here theDP fluctuations are multiplied by
a divergent Coulomb potential, and therefore must be
tained. The part of the action that is quadratic in these m
sive fluctuations reads

Am
~2!5

1

4E dx dy tr Gsp~x2y!DL~y!Gsp~y2x!DL~x!

1E dx DL~x!DP~x!1Aint
~s!@S^P&S211SDPS21#,

~4.5!

with Aint
(s)@Q# the spin-singlet interaction term from Eq

~2.12b!. Adis, and the invariant measure, expanded to sec
order in DP, also contribute toAm

(2) . However, their net
effect is to add a constant to the singular interaction poten
in the Aint

(s) contribution toAm
(2) , and hence they can b

neglected. Likewise, there are terms linear inDL that couple
to the soft modesS. These always contain at least one fr
quency or gradient squared, and therefore are unimpor
for the leading structure imposed by the Ward identity. Th
also turn out to be renormalization-group irrelevant at
Fermi-liquid fixed point that we will discuss in Sec. V be
low. We therefore neglect all of these terms.

Because of the coupling betweenDP and S, Am
(2) still

represents a complicated quadratic form. To handle it,
expandS, Eq. ~4.4c!, in powers ofq. To lowest order, we
just haveS51. It turns out that this lowest-order approxim
tion is sufficient to ensure the correct structure of the W
identity. We have also explicitly checked that higher-ord
terms in thisq expansion lead to corrections that are irr
evant near the Fermi-liquid fixed point. WithS51, the mas-
sive Gaussian fluctuations are easily integrated out. Neg
ing terms that are of first or higher order in the extern
frequency, the result is a change of the interaction termAint

(s)

to a term of the same structure, but withG (s) replaced by its
screened counterpart,

Gsc
~s!~p!5

G~s!~p!

11NFG~s!~p!
, ~4.6!

with NF from Eq. ~2.13c! ~here we have neglected a wav
number dependence that is subleading compared to th
G (s)). We see that integrating out the massive fluctuation
the approximation we have chosen leads to static scree
of the Coulomb interaction. Analogous screening effects
cur in the remaining interaction channels. However, they
uninteresting there since they just renormalize the numb
G (t) andG (c).

The remaining steps in the derivation of the nonlinears
model are the same as in I. We thus obtain thes model
action

ANLs M5
21

2GE dx tr„¹Q̃~x!…212HE dx tr„VQ̃~x!…

1Aint@Q̃#, ~4.7!

whereQ̃5Q̂2p, with p from Eq. ~4.3b!. G58/ps0 with
s0 the conductivity in the self-consistent Born approxim
tion, andH5pNF/8. Aint is given by Eqs.~2.12!, but with
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G (s) replaced byGsc
(s) , Eq. ~4.6!. This is the generalized non

linear s model for disordered electrons with a Coulomb i
teraction, as proposed and discussed by Finkel’stein,12 and
the above procedure represents a technical derivation of
model. Its properties have been reviewed and discusse
detail in Ref. 6. Using the explicit results of that reference
is straightforward to check that the model indeed obeys
Ward identity, Eq.~3.10!.17 This justifies,a posteriori, the
approximations that have entered our derivation. We w
further discuss the merits and limitations of the model in
next section.

V. DISCUSSION

We finally discuss our results, and the procedures use
derive them.

A. Role of the phase-space decomposition

Let us start with a discussion of the phase-space dec
position in Sec. II A, which writes the interaction term~and
also the disorder term! in the action as a sum of terms o
different structures, with a cutoff to avoid double countin
As a result, the definition of the effective action contains t
cutoff, which is a priori unspecified. For instance, withou
the cutoffl the three termsS̃int

a (1,2,3), Eqs.~2.2!, would all be

equal and equal toS̃int
a . A superficial consideration migh

conclude that this decomposition of the action introduces
unnecessary ambiguity into the theory. In fact, however,
phase-space decomposition is necessary in order to der
theory that allows for a well-behaved perturbation theo
This can be explained most easily by using the disorder t
Adis, Eqs.~2.11!, as an example. As explained in I, the tw
contributionsAdis

(1,2) result from a phase space decompositi
analogous to the one performed on the interaction, and
matrix Q(x) is therefore to be understood as containing o
Fourier components with wavenumbersuku,l. Now sup-
pose we had not performed the decomposition. ThenAdis

would consist ofAdis
(2) only, with t rel replaced by 2t rel , and

Q(x) containing all Fourier components. The saddle-po
Green function for this action would then contain a disord
part of the self-energy that is half the Born value. In a p
turbation expansion in powers of the disorder, higher ord
would then have to make up for the missing factors of 2
zerothorder, i.e., the perturbation expansion would be s
gular. This is precisely what happens in standard many-b
perturbation theory,3 where singular integrals make it impos
sible to easily determine the order of a contribution from
diagrammatic structure, and infinite resummations are
general necessary to obtain all contributions of a given ord
In contrast, perturbation theory for the nonlinears model is
much better behaved, with the number of loops determin
the order to which a given diagram contributes. This is
consequence of a judicious choice of the starting point
the loop expansion, which in turn depends crucially on
phase-space decomposition. The fact that the theory dep
on a cutoff is the price paid for the controlled nature
perturbation expansions.

Similarly, the phase-space decomposition performed
the interaction part of the action allows us to perturbativ
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control the complicated contributionWint
(2) to the Ward iden-

tity, Eq. ~3.11!. This guarantees that the nonlinears model
correctly reproduces perturbation theory in the interaction
first order, as is well known from comparing results obtain
by either method.18,12,6

Conversely, the above discussion makes it clear that
nonlinears model, owing to its derivation, is perturbative
nature with respect to the electron-electron interaction.
deed, its restriction in that respect is more serious than w
respect to disorder: Since the loop expansion is an expan
in powers of the disorder, going to higher order in perturb
tion theory will always include higher order disorder effec
With respect to the interaction, the analogous statemen
not true, since some effects of higher order in the interac
are left out of the model, although the loop expansion resu
cetain classes of interaction terms to all orders. Of cours
complete renormalization of the model would, in princip
supply all of the effects that might have been left out of t
bare model, but this will in general not be captured by
standard perturbative renormalization based on low order
the loop expansion. This is a restriction that is important
keep in mind in the context of discussions about poss
exotic effects of a strong effective interaction, such as, e.g
metallic non-Fermi liquid ground state. It may also be r
evant for understanding the observation19 that renormaliza-
tion group calculations based on thes model in high dimen-
sions (d.6) reveal relevant terms of a structure that is n
seen in low-order 21e expansions. Physically, the ‘‘stan
dard’’ generalizeds model approach is valid if the physic
one is interested in is determined by the two-particle dif
sive modes. If, for example, there were also soft sing
particle excitations, then in general the coefficients in thes
model would be singular and this approach would bre
down.

Finally, we note that already in the Gaussian approxim
tion the perturbative nature of thes model approach with
respect to interactions is apparent. In I we pointed out t
before the massive modes were integrated out, the Gaus
field theory explicitly contained the Stoner theory for ferr
magnetism. However, after thes model approximation was
made, the interaction terms that lead to the Stoner the
were absent.

B. Screening, and the disordered Fermi-liquid fixed point

A characteristic feature of the long-range Coulomb int
action is that it leads to the system being incompressi
The wave-number-dependent thermodynamic deriva
(]n/]m)(k)5x(k,V50), which is proportional to the com
pressibility, is for small wave numbers given by

S ]n

]m D ~k!5S ]n

]m D
sc

k2

k21k2
, ~5.1!

with k the screening wave number, and (]n/]m)sc5xsc(k
→0,V50) the screened density susceptibility, which is
nonzero number. This structure follows from, and is co
trolled by, the Ward identity, as can be seen from Sec. II
above. It is instructive to check explicitly that the nonline
s model respects the compressibility sum rule, Eq.~5.1!.
Within the framework of thes model, one has6
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S ]n

]m D ~k!5
p

8
@H1Ks~k!#, ~5.2!

with H as defined after Eq. ~4.7!, and Ks(k)
52pG (s)(k)/8. We see that thes model indeed respects th
compressibility sum rule, with the Gaussian approximat
for the screened compressibility, (]n/]m)sc'NF . Notice
that in the model originally proposed by Finkel’stein,12

Fermi-liquid corrections had been put in to make (]n/]m)sc
the exact screened density susceptibility. These are mis
here, since we have integrated out the massive modes, w
account for the screening, in a Gaussian approximation.
emphasize that, while it is of course always possible to pu
Fermi-liquid corrections by hand, nothing is really gained
doing so: Such a procedure only amounts to a partial res
mation of some terms that are of higher order in the inter
tion, which does not change the fact that the effective the
has a perturbative character with respect to the interaction
was discussed in Sec. V A above. Furthermore, the poin
any effective theory is that it correctly captures thestructure
of the full theory, while the coefficients can be represen
by some approximation in the bare theory. Upon renorm
izing the bare effective theory, the coefficients will be reno
malized by fluctuation effects.

C. Renormalization-group properties
of the effective field theory

We finally mention that the renormalization-group pro
erties of thes model, Eq.~4.7!, are well known. The theory
possesses a critical fixed point that describes an Ander
Mott metal-insulator transition.20,6 Also, due to the short-
range nature of the effective, screened, interaction@Eq.
~4.6!#, the discussion of the stable Fermi-liquid fixed poi
given in Sec. III B 2 of I still applies. The Fermi-liquid
ground state is stable ford.2 in the presence of quenche
disorder, and ford.1 in the clean limit. The corrections to
scaling yield the weak-localization nonanalyticities and th
clean counterparts as discussed in I, modified by the l
squared singularities in the density of states and the so
attenuation that are induced by the Coulomb interaction4,6 as
mentioned after Eq.~3.10! above. We emphasize again, how
ever, that due to the perturbative nature of the effective fi
theory, our considerations do not in any sense constitu
proof that the Fermi-liquid fixed point will be stable for a
bitrary strengths of the bare interaction constant. What
have shown is that the fixed point is perturbatively stable
weak interactions. It is easy to see that an interaction tha
of longer range than the Coulombic one,v(x);1/uxua with
a,1, will destroy the screening process, and hence lead
relevant operator that destroys the Fermi-liquid fixed po
at least close to its lower critical dimension. If an effecti
interaction of such long range were generated by the re
malization group acting on thes model, or if it were present
in a the bare action for a different effective theory that is n
subject to the perturbative restriction of weak interactio
then this could lead to a non-Fermi-liquid ground sta
These points may be important in the context of the ongo
discussion about possible non-Fermi-liquid ground state
2D ~clean! electron systems.21
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APPENDIX: PROPERTIES OF THE Q MATRICES

Here we list again the symmetry properties of theQ ma-
trices that were defined in I, and add some additional
marks. Q is self-adjoint under the adjoint operationQ1

5CTQTC, with Cnm
ab5dnmdab i t1^ s2,

Q5CTQTC. ~A1a!

In addition, the Hermitian conjugateQ† of Q is related toQ
by22

Q†5~t3^ s0!GQG21~t3^ s0!, ~A1b!

where the similarity transformation denoted byG has the
property

~GQG21!nm5Q2n21,2m21 . ~A1c!

We now expand our matrix fields in the spin-quaternion
sis defined after Eq.~2.9!,

Q12~x!5 (
r ,i 50

3

~t r ^ si ! r
i Q12~x!, ~A2a!

L̃12~x!5 (
r ,i 50

3

~t r ^ si ! r
i L̃12~x!, ~A2b!
s.
d
ork
nk
s-

re-

a-

where again 1[(n1 ,a1), etc. In this basis, we have the fo
lowing symmetry properties:

r
0Q125~2 !r

r
0 Q21, ~r 50,3!, ~A3a!

r
i Q125~2 !r 11

r
i Q21 , ~r 50,3; i 51,2,3!, ~A3b!

r
0Q125 r

0Q21, ~r 51,2!, ~A3c!

r
i Q1252 r

i Q21, ~r 51,2; i 51,2,3!. ~A3d!

Together with the behavior under Hermitian conjugation,
~A1b!, this further implies

r
i Q12* 52 r

i Q
2n121,2n221
a1a2 , ~A4!

for all i andr .22 Analogous relations hold forL̃ by virtue of
the linear coupling betweenQ and L̃.

We further note that as a result of Eqs.~A3d! and~A4! the
matrix elements1,2

1,2,3Q11 in the particle-particle spin-triple
channel are real~not imaginary, as erroneously stated in!.
As a result, the Gaussian theory@Eqs.~2.36! in I# is formally
unstable in that channel, and the formally diverging Gaus
integral needs to be interpreted. We have ascertained t
rotation of the relevantQ-integration contour onto the imag
nary axis, which effectively makes1,2

1,2,3Q11 imaginary, pro-
vides an interpretation that guarantees agreement with
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