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Theory of many-fermion systems. Il. The case of Coulomb interactions
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In a recent paper a general field-theoretical description of many-fermion systems with short-range interac-
tions has been developed. Here we extend this theory to the case of disordered electrons interacting via a
Coulomb potential. A detailed discussion is given of the Ward identity that controls the soft modes in the
system, and the generalized nonlinear model for the Coulombic case is derived and discussed.
[S0163-182698)10239-4

[. INTRODUCTION the universal properties of the various phases on the one
hand, and to those of the transitions between these phases on
The theory of many-fermion systems is central to our un-the other.
derstanding of condensed matter, as well as of nuclei and The concepts for overcoming these problems exist; they
certain astrophysical systems. Of particular interest in aonsist of a systematic application of renormalization-group
condensed-matter context are the universal properties afleas. Historically, the renormalization group has been
many-electron systems, i.e., phenomena at long wavelengthainly associated with critical phenomena at continuous
and small-frequency scales that are independent of the matphase transitions, for which the importance of symmetries
rial's detailed microscopic structure. Historically, there haveand soft modes has been universally appreciated. While it
been two important avenues to this problem: Landau’s phehas always been clear in principle and occasionally has been
nomenological Fermi-liquid theory,and the microscopic emphasizeithat the renormalization group, rather than just
many-body perturbation theory or Feynman diagrambeing a tool for studying critical phenomena, allows for a
approactt. The latter soon was generalized to include theunified description of both phases and phase transitions,
scattering of electrons by static impuriteand it has led to  these ideas have not been widely appreciated. Only very re-
many important insights concerning the nature of interactingently has there been the beginning of a paradigm shift in
disordered electron systems. For instance, it was used this respect. For instance, starting with Shankar’s work,
show that the combined effects of disorder and interactionthere has been much activity recently on the derivation of
lead to the nonanalyticities in the frequency and wave<lean Fermi-liquid theory as a stable renormalization-group
number dependence of both thermodynamic and transpofixed point’® These methods, however, have proven very
properties of disordered metals that have become known dward to generalize to the case of quenched disorder.
“weak-localization effects.*® In a previous paper, to be referred to a3 two of us have
There are, however, many interesting phenomena fodeveloped an effective field theory for many-electron sys-
which an approach based on many-body perturbation theogms that is particularly suitable for dealing with disordered
is not feasible. An example is the Anderson-Mott metal-systems. This theory, which is formulated in terms of classi-
insulator transition that the electrons undergo with increasingal matrix fields, allows for a systematic separation of soft
disorder strengtf. This quantum phase transition is best and massive modes, and the latter can be integrated out in a
studied by means of effective field theories and the use of theimple approximation to yield an effective theory for the soft
renormalization group, an approach that was pioneered bgnodes. The theory also allows for the clean limit to be taken,
Wegner’ Also, many-body perturbation theory is ultimately but the soft-mode structure in that case turns out to be more
unsatisfactory as a tool even in the metallic phase, despite iomplex, which gives the effective theory fewer advantages
impressive successes. One major problem is that, within pepver traditional approaches than is the case in the presence of
turbation theory, it is not clear whether the weak-localizationdisorder. This theory has been uséder alia, to prove that
effects are actually the leading nonanalyticities. Furthermorethe well-known weak-localization effects are indeed the
universal phenomena such as the weak-localization effecieading nonanalyties, to provide a technically satisfactory
arise from the presence of soft modes in the problem, whiclderivation of Finkel'stein’s generalizatiéh of Wegner’'s
many-body perturbation theory is not well suited to dealnonlinears model/ and to derive a previously unknown
with. The softness or masslessness of these modes is thenanalyticity in the spin susceptibility of clean Fermi
result of symmetries that are often not explicit in the usualiquids**!
perturbative formalism, and therefore soft modes arise appar- In I, the effective classical field theory was developed for
ently accidentally as a result of complicated cancellationsfermions that interact via a short-range potential, assuming
rather than being manifestly built into the formalism. Finally, that the underlying Coulomb potential had been screened at
it is unsatisfactory to have entirely different approaches tahe level of the basic fermionic theory. In the present paper,
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we show how to handle a long-range interaction entirely We now introduce a momentum cutoff and rewrite the
within the framework of the classical matrix field theory, interacting part of the action as
focussing on the disordered case. We give a detailed discus-
sion of the Ward identity that controls the structure of the Ta_Ta(l) Ta(2) Tad)
soft modes, and we derive Finkel'stein’s generalized nonlin- S =St + S S 229
ear o model? for the Coulombic case. where

The outline of our paper is as follows. In Sec. Il we recall
the matrix field theory of I, and generalize it slightly to allow _ T . .
for a Coulomb interaction. We show that the saddle point ~ S&M=——=> > > v(q)¢® (k)¢ (p+0)
considered in | remains valid, and that an expansion about 2510, kb “a ! ?
the saddle point to Gaussian order produces RPA-type X ¢ (p)® (k+Q) (2.2
screening. In Sec. Il we perform a symmetry analysis, and 72 71 ’ '
derive and discuss the Ward identity that controls the soft
modes in the system. In Sec. IV we show that integrating out ~ (2 T /
the massive modes in the simplest approximation that re- Si ):_502:; %‘; Eq: v(p=kK)O(lp—kl—))
spects the Ward identity leads to Finkel'stein’s model. In e
Sec. V we conclude by discussing our results, and give, in X (K)o (p+ @k a , (2.2
particular, a discussion of the accuracy of thenodel. V(09PN D, (P). (229

T

Il. MATRIX FIELD THEORY Se®=—— 3> > > vk+pO(p+kl—)\)

. . n 25770, kp “q
A. Grassmannian field theory

Our model and basic theoretical setup is the same as in I. X g (=5 (k+a) s (—p+a)ys (p).
We will therefore restrict ourselves to discussing the changes

that are necessary to accomodate a Coulomb interaction. (229
The action is given by As in real space, we use al{ 1)-vector notation withk
o =(k,wp), wherew,=27T(n+1/2) is a fermionic Matsub-
S= —f dX> ¢, (X) 340, (X) + So+ Sgist St - ara frequency. The prime on tliesummation indicates that

only momenta up to the momentum cutaffare integrated
(2.19 over. While the long-wavelength, small-frequency phenom-

Here they and ¢ are Grassmann valued fields, and we use £12 We are interested in do not in general depend othe
(d+1)-vector notation, with x=(x,7), and J[dx choice of this cutoff will be important for the range of valid-

= [ dx[Ed. x denotes positions imaginary time,V the ity of the final effective theory. We will come back to this
system 30Iume/3= 1/T the inverse temperature: th'e spin point in Secs. Ill and V below.'I.EquatiqrﬁE.Z) represent the
label; and we use units such thiat kg=e?=1. S, (together same phase-space decomposition as in E48). of |, except

: : oo _ : : that we have explicitly inserted the step functions in Egs.
with the time derivative terpnandSy;s describe free fermions (2.2¢.2.2d, because the small-wave-number parva al-

and their interaction with a static random potential, respec- . : ;
tively, and have been defined in I. The random potential Wéeady contained in qu'Zb)' In | the overcounting that re-
ulted from not having the step functions explicitly present

assume to be Gaussian distributed, and we employ the re /as of No consequence. singeén that case was not sinqular
lica trick to handle it.S;,; describes a Coulomb interaction, q ' 9

which in the replicated theorgwhich we denote by a tilde in the small-wave-number limit. For a Coulomb interaction,
takes the form more care must be taken.

We next introduce spinors

éint:Z Nsﬁfn: - %E f dx,dx; E v (X1 —Xp) d,ﬁT(x)
« _a B 01,02 (ﬁﬁ(X)Z( l//ﬁ()()) , (2.39
X &( 11— 72) thg (X)) g (X2) g (X2) thg (X1).
2.1b and their Fourier transforms
Here « is the replica index, and = ok _(df%(k)) 3
o= 1 210 W= o | (2:39

is the Coulomb potential. For the dimensionalities of interest

d=2.3, its Fourier transform is as well as their adj_omts;b (k), and a scalar product in

spinor space,, ) = - &, where the dot denotes the matrix
od—1_ product. Then we can write the interaction term as
v(Q)=(1=8g0 g7 (2.10
|al
where the factor % 6 represents a uniform positive back-
ground charge that ensures charge neutrality. with

Qa_ta S« Sa(3
Slnt_ Slnt(S) Slnt(t)+ Slnt( )v (2'4a
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B. Composite variables: matrix field theory

Za(s)_
nt

N —

kEp % i) (¥ (K), Soy*(k+))

After completing the phase-space decomposition and pro-
jecting onto densities we are in a position to reformulate the
X (g (p+a),so¥*(P)), (24D theory in terms of composite variables. This proceeds in ex-
act analogy to I, and we therefore only quote the result. The

partition functionZ for the replicated theory is written as an
integral with respect to two matrix field§ and A,

- T , S
n== 52 2 TE@ 2 (k). sy (k+a))
kp d i=1

X (P*(p+a),si¥“(p)). (2.49

Heres;=io;, with oy, 3the Pauli matrices, ansy= oy is
the 2X 2 identity matrix. We have also defined the singkt
and triplet(t) interaction amplitudes

7= f D[Q] D[AJe4QAl, 2.7

with an effective action

Fﬁt,)p(Q):%U(p_k) O(|p—k|—N), (2.59 A[Q,T\]:Adis[Q]"'Aint[Q]"‘%Trln(Gal_iK)
and +f dx tr[A(X)Q(x)]. (2.9
(s) — _1TW
Figp(a)=v(a) =i p(a). (2.5 The matrix fieldQ corresponds to expressions that are bilin-
In addition we define the Cooper channel di-cattering ~ €ar in the fermionic fieldsy and 4. Correspondingly,Q
amplitude, carries two frequency indicesandm, and two replica indi-
cesa andB. Each matrix elemen®?~ is an element oQ
(@) =v(k+p)O(Ip+k|—N). (250  xQ, with Q the quaternion fieldA is an auxiliary field the

Th ; th h di technical role of which is to constrain the products of fermi-
ese expressions are the same as the corres . X . _
oo : PONding ONe e fields to theQ. It is convenient to expand t@%% in a

I, with the exception of the momentum restrictions in theSpin—quaternion basis

effective interaction potentiaIE(kat'C) discussed above. Next

we project the modes S onto density modes in the 4
particle-hole and particle-particle channels that were defined gg: E 'r ﬁfﬂ'@si , (2.9
in I. The result of this procedure, which was explained in ri=o

Appendix A of 1, is ~ )
and analogously foA. Here 7o=sy,=1, with 1, the 2x2

Zals T ' e . . unit matrix, andr; = —s;=—io; (j=1,2,3), where ther;
St =~ EKE:; Eq: (@) (k). s (k+0)) are the Pauli matrices. The properties@fndA have been
' derived in I, and for completeness we list them again in
X (P (p+9),Ser*(P)), (2.6  Appendix A. In Eq.(2.8) and in what follows, Tr is a trace

over all degrees of freedom, including an integral oxer

~ T 3 while tr is a trace over all discrete degrees of freedom that
S§ah=— EI‘(”E DD (WK), s A (k+q)) are not shown explicitly.
kp g i=1
X (@ (p+a),s¢%(p)), (2.6b Gy '=—a,+VZ2m+p, (2.10
T is the inverse of the free-electron Green operator, and it is
Sa®=— 1@ > 3 3"y (k) (—k+q) clear from the structure of the TrIn term in EQ.8) that the
2 o170z kp ! 2 physical interpretation of the field is that of a self-energy.
a a The contributionsA4y;s and A, to the action read
Xy (P A ¢y (—P). (2.69 dis int
Here Aad Q1= AL TQI+ ARIQI, (2113
rs(q)= -, 2.6 -1
(=@ 280 ATQI= 5[ axiroe, (2118
andT'® andT'(© are numbers that result from integrating Pl
over the wave vectors in EgR.5) as explained in Appendix
A of 1. Notice that as a result of this prlocedufé,t) andI"© A[Q]= f dxt[Q(X) ]2, (2.110
for clean electrons depend logarithmically on the cutoff TNE Trel

and diverge a3.— 0. For the disordered case, the logarith- . . . S
mic singularity is protected both by and by the disorder. With 7l the single-particle relaxation time andg a related
This singularity, which is a consequence of the CoulombScattering time defined in I, and

interaction, is the reason for our modification of the proce- - ® ©
dure employed in I. Aind Q1= Aint’ + A + At » (2.129
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T Similarly, in an expansion about the saddle-point to
Aiﬁ?:z[ dxdy 203(—1)' > 2 TO(x—y) Gaussian order, all of the expressions derived in | remain
= faNz.m valid if we substitutd ) (p) for I'® in all propagators taken
XLt (7,®80) Q2% 1y 1 m(X¥) ]} at wave vectorp. In particular, we obtain for the low-
A frequency, long-wavelength limit of the density susceptibil-
XAt (7 ®80) Qie's mn, (W1} (2.12p ity x in the disordered case,
2
TT® B d(p)p
W_ Ay X(PQ)=xslP) - (2.143
M- o F v 3 3 VXA e
3 Here(Q, is a bosonic Matsubara frequency,
x 2, {l(r@s)Qnn, (01} N
= —Ng
XstP)= ——————, (2.14b
XA (1@8) Qe mn, (0]} (2129 T LN (p)
is the static density susceptibility, and
© Tr©
A =— derEu nl%m d(p)=D[1+ N (p)], (2.140

with D the Boltzmann diffusion coefficient. In the clean limit

X D {”[(Tr®30)Qﬁf,—nl+m(X)]} we obtain the usual RPA expression,
< (1®89)Q%% o m(x)]}. (2129 VO T C L) 2.15

| | . 1 TO(P)xo(p. Q)
HereNE is the density of states at the Fermi level in saddle- . . . : .
point approximation, as defined in E.139 below. We with xo the Lindhard function. We see that in Gaussian ap-

have written the action in real space, but one should remenfroximation, the field theory describes screening, and the

ber that all of the fields are restricted to Fourier component§Xistence of plasmons, in RPA and its disordered generaliza-
with wave numbersk|<A. tion, respectively.

C. Saddle-point solution, Gaussian approximation, IIl. SYMMETRY ANALYSIS

and physical correlation functions From Sec. Il C it follows, in conjunction with |, that at the

It is easy to see that the Fermi-liquid saddle-point dis-level of the Gaussian approximation thg,q, with nm<0
cussed in | remains a valid saddle-point in the presence of are soft modes. In this section, we perform a symmetry
long-range interaction, witf'® in | replaced byI'®(q analysis in order to show that they are indeed the exact soft
=0). The single-particle Green function in saddle-point ap-modes of the theory. This will allow us to explicitly separate

proximation is therefore given by the same expression as ifhe soft modes from the massive ones, and to formulate an
l, viz., effective field theory for which the soft modes remain mani-

festly soft to all orders in perturbation theory.
Gsdp,wn) =[iw,—p?2m+u—3,]"% (2.133

with x the chemical potential, and the self-enerfythe A. Basic transformation properties, and Ward identity

solution of the equation Let us start with a symmetry analysis of our field theory

11 that is a slight generalization of the procedure followed in |,

_ - 2 -1 which in turn was a generalization of the work on noninter-
= iwp—p2m+ u— . - :

>n 7TN|:Tre|V% [ion=p #=n] acting electrons by Scker and Wegner, and Pruisken and

Schder.!* We consider an infinitesimal simultaneous rota-

+2I‘(S)(q=0)TZ ei“’moé tion in frequency and replica space given by
m

[ Te= Bi00r0l Oacy O, OpayOmn,~ OacryOnnyOpec; Oy 10

i 2 -1
x% [iom—p*2m+u—3,]" 1. (2.13p = 608,018+ 0(62), 3.0
This is the standard Hartree-Fock result, with the disordewhich transforms th& matrices according t@ —TQT 1,
treated in the self-consistent Born approximation, with T=CTC", where C=in®s,. (n;>0n,<0) and
_oq (aq,a7) are fixed pairs of fre_quency and replica ind_ic_es t_hat
F=y > Im Ged Pyl 0,—10) (2.139  characterize the transformation. Under such an infinitesimal
p rotation, theQ matrices transform like

is the density of states at the Fermi level in saddle-point aB_, By QB (3.2a
approximation, which is used for normalization purposes nmoenm e
throughout. with
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SQR=[ Baa, Bon, Q™ Opay Orn, Qi — (122)]6 8. Solution of the Ward identty
We now solve the Ward identity by employing a method
+0(6%). (3.2b  that is more transparent than the one used in I, and more

.. .. suitable for a generalization to the long-range case.
Here we have shown only the frequency and replica indices, \ye first split up theQ-matrices into their averages and

since all other degirees of freedom are unaffected by thﬁuctuations:Qnm=<Qnm)+(AQ)nm= S Que) + (AQ) -

transformation. The\ matrices transform accordingly. The Sincen;#n,, andnz#n,, we have(Q, 1. )=(Qn.n )=0.

symbol (1-2) indicates the same terms as written previ-g hermore, if we pun,=n; in the threlez-point fZéctions,

ously, but with thg indices 1, and 2 interchanged. _, then the expression in square brackets in Bcbb vanishes
9f the terms in the action, Eq2.9), only Trin(G, due to Eq.(A3a), so effectively we also havéQ, “b>:O'

jiA) andAim are not i.nvariant u_nder the abpve transforma—Equaﬂon (3.59 then takes the form 2

tion. Their transformation behaviors are easily determined by

an explicit calculation. We find Wi+ 8Qn17n2C12Ya4: 513624N15, (3.69
Trin(Gy t=iA)—Trin(Gy *—iA)+ 6 Tr(G biw), where
(3.39
with G=(G; 1~i%)~%, and Ciz36 f dy(5(AQ)12(Y)5(AQ)34(x)),  (3.60)
i a e and
Ir(&w)nﬁ'l: §i05r0(5aa15nn15[3a25mn2
_/0 _ /0
¥ Sua, B Ope, )i Qs (33D N12=(0Q11(X)) = {0Q22(X))- (3.60
W,,; can be written as the sum of two tern\A/,im=Wi(n1t)
and +W2 | with
A= AR+ AR, (3.48 Wi = — 325, , T9(k—0)Ny,T
with
XnEn S0, 0,0a-b,1-2Cab3a: (3.60
a'''b
5Ai<n?=32f dxdyl"“)(x—y)r;O'sT and
0 @191, 0 @221 _ (2) — _ " 19
X“aznb [rQnanb(X)ran,nz—(na—nb)(y) (1<—>2)]0' Wint - 32r:20,3 % re (q)T
(3.4b S 0
X2 [(F(AQ) 2 . (—q)
For our purposes, we concentrate on a discussion of the Ranb t MM~ (Ma ™ No)
particle-hole spin-singlet interaction; the discussion of the 0 ayay, 0
remaining interaction channels proceeds analogously, but is Xr(AQ)nanb(Q)O(AQ)34(X)>_(1‘_‘2)J'
less interesting since in these channels the interaction is short
X . (3.68
range. Proceeding analogously to I, we obtain from the
above transformation properties the Ward identity Here we have chosen a mixed representation¥fp , with
someAQ in real space, and some in Fourier space, in order
to make the cutoff on theg integration explicit.
Wi +8Q, _ 9 S . ) .
int+8n, “2j dy(0Qu2(y)0Qs4(X)) To proceed, let us ignor&V?) for the time being. Its
. 0 0 effect will be analyzed later. EquatiaB.63 then turns into
= 013924((0Q11(X)) ~(0Q22(X))), (3.53 a closed integral equation for the homogeneous correlation
where function C. At this point we note that our global symmetry
transformation, Eq(3.1), produces a Ward identity for ho-
mogeneous correlation functions. For a short-range interac-
Wip = —32] dydzI'®(y—2z) T tion, this is sufficient to capture the important structural re-
r=03 strictions imposed on the theory by the symmetry of the
action. However, in the long-range case the homogeneous
X 27 [(0Qsa007Qp 3 (y)PQu2t _ . (2) limit is singular, and we have to be more careful. For in-
MaMb ab 27 T stance, it is obvious that a local symmetry transformation
—(1-2)]. (3.5p  would generate a wave-number-dependéf®t in W), and

in the long-range casB®(k—0)#T'(®(k=0). This is the
To simplify the notation we have adopted the convention lreason why we have writteFi(®(k—0) in Eq. (3.6d. Fur-
=(ny,a,). For the special case of a short-range interactionthermore, it is known from perturbation theory that the dis-
I'®(x—y)=T §(x—y), we recover Eqs(3.14 of I. persion of the soft modes that are controlled by the Ward
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identity is diffusive, Q~k?.1® The equation for the wave- 7N(€g)
number-depender@ then takes the form 16C 1234 k—0)= 512034 Q, .
1 2
8(Qn, n,+ DK?)C1z 34 k) = 813624N 1K) + 3209 (k) wN(eg)27T
+ 5172,3745011012 5a1a3w
X 50( @ N12(k)T np—ny
172 (3.10
XE P Con oK) We see that the long-range Coulomb interaction causes the
< Caga “1-2a-b ~ab3A ™/ part of C that is nondiagonal in frequency to diverge like

T/Q k2, rather than likeT/Q? in the short-range case. This
3.7 structure is responsible for the well-known log-squared terms
in the density of states and in the sound attenuation coeffi-
cient that appear in perturbative calculations of weak-
localization effects in 2D systems with Coulomb
interactions’
We now consider the remaining contribution W,

with D the (exac} diffusion constant, antl,(k) the wave-
vector-dependent generalization bf;, as defined in Eq.
(3.60. It is useful to define

Pa(k)=T > 8nn,—n,Nn.n (K. (3.89 W2 . Without the restriction on the wave-number integral in
NNz Eq. (3.68, one could relabel wave vectors to show mﬁft)
By performing appropriate summations over the Ward iden0ntains terms that have the :.;ame.structurwﬁg_i.. How-
tity, we find that ever, due to the cutoff contained in the definition of our
Q-field theory this is not the case, and we resort to perturba-
Po(K)=1(Q,+Dk?) xdk,Q,), (3.8p  tion theory to analyze the structure‘oti(,i). By reexpressing

AQ in fermion fields, and using Wick’s theorem to write the
with ys.the screened density susceptibility. The latter is decorrelation function in Eq(3.68 in terms of Green func-
fined as tions, we find

X (K, Qp) Wi(nzt>~F(S>(k)%Min[)\z,)\z()\l)], (3.11)

k,Q,)= .
Xsd K. Qp) 1+F(S)(k))((k,ﬂn), (3.80

with N\ the cutoff introduced in Sec. Il A, andthe elastic
where scattering mean free path. Based on this information, we now
choose the cutoff. There are three obvious possible choices:
One can make a fixed, small fraction of either the Fermi
X(k-Qn):32T12234 Sn,n;—n,C12,34K) 38d  wave numbekg, or the mean free path or the screening
wave numbelk. The first choice would not allow us to con-
is the full density susceptibility. Notice that this relation be- trol the terms inW{?, and is therefore undesirable. The
tweenP,, and y.. is exact, 5inC§2125n,n17n2W(122),34= 0. second choice is possible, but means foregoing the option to
The integral equation, EG3.7), can be solved in terms of take the clean limit, for reasons discussed after @¢d.
P,y OF yec by means of the same methods that were employedVe therefore choose the third option, which maki of
to discuss the Gaussiaield theory in I. We find higher order in the interaction than the other terms in the
Ward identity. To linear order in the interaction the solution
C12’34k):%[513524])12(k)+5172’3745%“350[1&2 given aboye |r22)Eqs(3.9), (3.10, is then exact. To higher
order, while W;;/ cannot make the model,, (nm<O0)
X 2T (k) D1(k) D (k)] (3.99  massive, it will change the prefactors of the diffusive singu-
larity at small frequencies and wave numbers. We conclude
where that an effective theory that respects E@9) will have the
correct soft-mode structure as it follows from the symmetry
D1o(k)=2NyK)[Qy, —n,+ D], (3.9D  of the action. It will further exactly reproduce perturbation
theory to first order in the interaction. In Sec. IV we will
and show that the generalized nonlineamodel of Ref. 12 is an
effective theory with these properties.
DY) =Dy K)[1-TE(K) xsd K,y n )11 .
(3.99 C. Separation of soft and massive modes
From the previous subsection we know that the correla-
n functions of theQ,,, with nm<0 remain soft, while
ose withnm>0 remain massive even in the presence of

To appreciate the difference between this structure and tht?o
analogous one in the short-range case, it is instructive th

\<I:V<i)tr;15|d§rk2tleﬂllmlt of lsrr]nat”hi\ga\lli;;uryvzeriaild ]Leqtf)nc'eﬁong-rangg interactions. Therefore the mod(_a separgtion for
“ny— Ny’ i 12 this case is the same as it is for short-range interactions, and
—mN(ep) with N(ep) the exact density of states at the e can restrict ourselves to summarizing the results of I.
Fermi level, andysdk,Qq —n,)~k?*Qq ;.. In d=3, we One consequence of the symmetry properties of Ghe
obtain matrices(see Appendix Ais that the set o) is isomorphic
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to the set of anti-Hermitian8nx8Nn matrices. As shown and a new field) by
in 1, from this it follows that the most gener&) can be
written as a product, A 4 1
Q(X) = 3~ S(P)S(X). (4.1b
Q=8Ps L. (3.12 ]
We then expand about the expectation valued aind P,

HereP is a matrix that is blockdiagonal in frequency space,

P=(P)+AP, A=(A)+AA. 4.2

>
P 0 As explained in 1, it is sufficient to replagd®) and(A) by
P=l o P/ 313 ihe respective saddle-point values, and to further reglRge
in the definition ofQ, Eq. (4.1b), by the simple approxima-
with elementsP~ (P<) for nm>0 (nm<0) that are iso- tion
morphic to the set of anti-HermitianNInxX4Nn matrices,
and § an element of the homogeneous space T
USp(8NN,C)/USp(4NN,C) X USp(4NN,C), i.e., the set of all (P~ Nem, (4.33
cosets of USp(Bn,C) with respect to USp(Mn,C)
X USp(4Nn,C).1®
This a_chieves the desire_zd separation of our degrees of 712= 8125Nwy . (4.3b
freedom into soft and massive ones. The massive degrees of
freedom are represented by the mafixwhile the soft ones We mention that there is no obvious small parameter that
are represented by the transformationsS  controls these approximations. Rather, they will be justified
e USp(8NN,C)/USp(4Nn,C) X USp(4NN,C). a posteriori by the fact that the resulting effective field
In order to formulate the field theory in terms of the soft theory, the nonlinearr model, respects the Ward identity,
and massive modes, one also needs the invariant measuegs. (3.9), (3.10, that was derived in the previous section.
I[P], or the Jacobian of the transformation from ¢o the ~ This in turn shows that the approximations, E¢&3), are
P and theS, defined by consistent with neglecting the terd{>) in the Ward iden-
tity, which itself is perturbatively controlled for small inter-
action strengths. If the theory is renormalizable, this implies
f blQJ--- :f D[P] |[P]f DLST---. (14 that the effective theory resulting from the above approxima-
tions will have the same structure as the full one, albeit with
We will not need the measure explicitly for our purposes,different coefficients. We will come back to this point at the
and refer to I, where it has been constructed in terms of thend of this section, and in Sec. V below. With these approxi-

eigenvalues oP. mations,Q has the properties

with

IV. EFFECTIVE FIELD THEORY FOR DISORDERED Q*x)=1, Q'=Q, TrQx=0 , (4.49

INTERACTING FERMIONS and can be parametrized by

Having achieved a separation of soft and massive modes,
we are now in a position to formulate an effective theory for . v1—qq q
electrons with a long-range interaction that focuses on the Q= q' _1/1_qfq ' (4.4b
soft modes. In the short-range case, this was done by inte-
grating out the massive modes in tree approximation. Thignere the matrixq has elements,,, whose frequency labels
led to the nonlineatr model in |, and it was shown that this .o |estricted tn=0, m<0. S can also be expressed in
procedure preserves the structure of the Ward identity. As g, ofg,®
result, theo model contains the same Fermi-liquid fixed ’
point, as well as the leading corrections to scaling near it, as JV1-bbf b
the underlying full model, and it also contains a critical fixed —
point that describes an Anderson-Mott metal-insulator tran- s ( —b' V1-b b) '
sition.

We cannot simply repeat this procedure for the presenwhere
case of long-range interactions, since integrating out the
massive modes in tree approximation would lead to a theory b(g,q") = _—1q f(q'q), (4.40)
that violates the Ward identity. We therefore must treat the 2
massive modes more carefully, and our aim is to find th i
simplest approximation that will still guarantee the correct

(4.40

structure of the Ward identity, and hence lead to an effective 2

theory that has the correct symmetry. f(x)= \/:(1— J1—x)¥2, (4.4
The first steps are the same as in I: We define a trans- X

formed auxiliary fieldA by Unlike I, where we just dropped the fluctuationsRoéndA,

5 here we next expand to second orderAiR and AA. The
AX)=8 HX)A(X)S(x), (4.19 reason for this change of procedure compared to the short-
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range case is that here thé® fluctuations are multiplied by () replaced byr(sf:)' Eq. (4.6). This is the generalized non-

a divergent Coulomb potential, and therefore must be rejnear - model for disordered electrons with a Coulomb in-
tained. The part of the action that is quadratic in these maSg action. as proposed and discussed by Finkel'dfeamd

sive fluctuations reads the above procedure represents a technical derivation of this
1 model. Its properties have been reviewed and discussed in

A(”?):_J dxdy tr Geg(X—Y)AA(Y) G y—X)AA(X) detail in Ref. 6. Using the explicit results of that reference, it
4 is straightforward to check that the model indeed obeys the

Ward identity, Eq.(3.10.1 This justifies,a posteriori the
+J dX AA(X)AP(X)+ AS[S(P)S *+SAPS 1],  approximations that have entered our derivation. We will
further discuss the merits and limitations of the model in the
(4.5 next section.

with A[Q] the spin-singlet interaction term from Eq.
(2.12h. Ag4is, and the invariant measure, expanded to second V. DISCUSSION
order in AP, also contribute ta4(?). However, their net . :
effect is to add a constant to the singular interaction potentia(lj We flrr:ally discuss our results, and the procedures used to
in the A{S) contribution t0.4{?), and hence they can be erive them.

neglected. Likewise, there are terms lineadin that couple

to the soft modesS. These always contain at least one fre- A. Role of the phase-space decomposition

quency or gradient Sq“*’?‘fed’ and therefore are un_important Let us start with a discussion of the phase-space decom-
for the leading structure imposed by the Ward identity. They,

lso t t1o b lizati irrel {at theposition in Sec. Il A, which writes the interaction terand
aiso turn out to be renormalization-group Irréievant a also the disorder termin the action as a sum of terms of
Fermi-liquid fixed point that we will discuss in Sec. V be

" different structures, with a cutoff to avoid double counting.

low. We therefore neglect all of these terms, 2) As a result, the definition of the effective action contains this

Because of the coupling betweerP and S, A’ still - ¢yioff which isa priori unspecified. For instance, without
represents a compllqated quadratic form. To handle it, W& o cutoffx the three term&e (123, Egs.(2.2), would all be
expandS, Eq. (4.49, in powers ofg. To lowest order, we - int b . . .
just haveS=1. It turns out that this lowest-order approxima- €dual and equal t&;,. A superficial consideration might
tion is sufficient to ensure the correct structure of the Wardgconclude that this decomposition of the action introduces an
identity. We have also explicitly checked that higher-orderunnecessary ambiguity into the theory. In fact, however, the
terms in thisq expansion lead to corrections that are irrel- Phase-space decomposition is necessary in order to derive a
evant near the Fermi-liquid fixed point. Wi= 1, the mas- the_ory that allows_ for a WeII-be_haved perturbat_lon theory.
sive Gaussian fluctuations are easily integrated out. Neglect-his can be explained most easily by using the disorder term
ing terms that are of first or higher order in the externalAdis _Eqs_.(2.1])1,2as an example. As explained in I, the two
frequency, the result is a change of the interaction e contributions A result from a phase space decomposition
to a term of the same structure, but witk® replaced by its @nalogous to the one performed on the interaction, and the

screened counterpart, matrix Q(x) is therefore to be understood as containing only
Fourier components with wavenumbgig <\. Now sup-
r'S(p) pose we had not performed the decomposition. THgn
() (P - @ :
I'l(p)= (4.6 would consist of A} only, with 7, replaced by 2, and

1+NeT(p) Q(x) containing all Fourier components. The saddle-point
with Ng from Eq.(2.139 (here we have neglected a wave- Green function for this action would then contain a disorder
number dependence that is subleading compared to that §frt of the self-energy that is half the Born value. In a per-
I'®)). We see that integrating out the massive fluctuations ifurbation expansion in powers of the disorder, higher orders
the approximation we have chosen leads to static screenintfould then have to make up for the missing factors of 2 at
of the Coulomb interaction. Analogous screening effects oczerothorder, i.e., the perturbation expansion would be sin-
cur in the remaining interaction channels. However, they ar@ular. This is precisely what happens in standard many-body
uninteresting there since they just renormalize the numbererturbation theory where singular integrals make it impos-
T'® andr©, sible to easily determine the order of a contribution from its
The remaining steps in the derivation of the nonlinear diagrammatic structure, and infinite resummations are in

model are the same as in I. We thus obtain thenodel 9eneral necessary to obtain all contributions of a given order.
action In contrast, perturbation theory for the nonlineamodel is

much better behaved, with the number of loops determining

-1 - 5 - the order to which a given diagram contributes. This is a
ANLGM:EJ dxtr(VQ(x)) +2Hf dx tr(Q2Q(x)) consequence of a judicious choice of the starting point for
the loop expansion, which in turn depends crucially on the

+ A 0], 4.7 phase-space decomposition. The fact that the theory depends

L on a cutoff is the price paid for the controlled nature of
whereQ=Q—m, with 7 from Eq. (4.3b. G=8/m0, with perturbation expansions.
oo the conductivity in the self-consistent Born approxima-  Similarly, the phase-space decomposition performed on
tion, andH=7Ng/8. A, is given by Eqs(2.12, but with  the interaction part of the action allows us to perturbatively
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control the complicated contribution{%) to the Ward iden- n T
tity, Eq. (3.11). This guarantees that the nonlineamodel Em (k):§[H+KS(k)]’ (5.2
correctly reproduces perturbation theory in the interaction to
first order, as is well known from comparing results obtained
by either method?128 with H as defined after Eq.(4.7), and Kg(k)
Conversely, the above discussion makes it clear that the — 7' ®)(k)/8. We see that the model indeed respects the
nonlinears model, owing to its derivation, is perturbative in compressibility sum rule, with the Gaussian approximation
nature with respect to the electron-electron interaction. Infor the screened compressibilitygr/du)se~Ng. Notice
deed, its restriction in that respect is more serious than witkhat in the model originally proposed by Finkel'stéfn,
respect to disorder: Since the loop expansion is an expansidrermi-liquid corrections had been put in to make{du)s.
in powers of the disorder, going to higher order in perturbathe exact screened density susceptibility. These are missing
tion theory will always include higher order disorder effects.here, since we have integrated out the massive modes, which
With respect to the interaction, the analogous statement i@ccount for the screening, in a Gaussian approximation. We
not true, since some effects of higher order in the interactiogmphasize that, while it is of course always possible to put in
are left out of the model, although the loop expansion resumEermi-liquid corrections by hand, nothing is really gained by
cetain classes of interaction terms to all orders. Of course, 80ing so: Such a procedure only amounts to a partial resum-
complete renormalization of the model would, in principle, mation of some terms that are of higher order in the interac-
supply all of the effects that might have been left out of thetion, which does not change the fact that the effective theory
bare model, but this will in general not be captured by thehas a perturbative character with respect to the interaction, as
standard perturbative renormalization based on low orders ias discussed in Sec. V A above. Furthermore, the point of
the loop expansion. This is a restriction that is important toany effective theory is that it correctly captures teicture
keep in mind in the context of discussions about poss|b|@f the full theory, while the coefficients can be represented
exotic effects of a strong effective interaction, such as, e.g., &Y some approximation in the bare theory. Upon renormal-
metallic non-Fermi liquid ground state. It may also be rel-izing the bare effective theory, the coefficients will be renor-
evant for understanding the observatibthat renormaliza- mMalized by fluctuation effects.
tion group calculations based on thhemodel in high dimen-
sions @>6) reveal relevant terms of a structure that is not
seen in low-order 2 € expansions. Physically, the “stan-
dard” generalizedr model approach is valid if the physics
one is interested in is determined by the two-particle diffu- We finally mention that the renormalization-group prop-
sive modes. If, for example, there were also soft singleerties of thec model, Eq.(4.7), are well known. The theory
particle excitations, then in general the coefficients indhe possesses a critical fixed point that describes an Anderson-
model would be singular and this approach would breakVott metal-insulator transitiof® Also, due to the short-
down. range nature of the effective, screened, interactifq.
Finally, we note that already in the Gaussian approxima4{4.6)], the discussion of the stable Fermi-liquid fixed point
tion the perturbative nature of the model approach with given in Sec. IlIB2 of | still applies. The Fermi-liquid
respect to interactions is apparent. In | we pointed out thaground state is stable fal>>2 in the presence of quenched
before the massive modes were integrated out, the Gaussidisorder, and fod>1 in the clean limit. The corrections to
field theory explicitly contained the Stoner theory for ferro- scaling yield the weak-localization nonanalyticities and their
magnetism. However, after the model approximation was clean counterparts as discussed in I, modified by the log-
made, the interaction terms that lead to the Stoner theorgquared singularities in the density of states and the sound

C. Renormalization-group properties
of the effective field theory

were absent. attenuation that are induced by the Coulomb interaéfias
mentioned after Eq.3.10 above. We emphasize again, how-
B. Screening, and the disordered Fermi-liquid fixed point ever, that due to the perturbative nature of the effective field

. , theory, our considerations do not in any sense constitute a
A characteristic feature of the long-range Coulomb inter-h,of that the Fermi-liquid fixed point will be stable for ar-

an k2

o (5.9

action is that it leads to the system being incompressibleyiary strengths of the bare interaction constant. What we
The wave-number-dependent thermodynamic derivativgyaye shown is that the fixed point is perturbatively stable for
(9n/du) (k)= x(k,Q2=0), which is proportional to the com- \yeak interactions. It is easy to see that an interaction that is
pressibility, is for small wave numbers given by of longer range than the Coulombic onex)~ 1/x|* with
a<1, will destroy the screening process, and hence lead to a
((9_n) (K)= relevant operator that destroys the Fermi-liquid fixed point,
u K2+ K2’ at least close to its lower critical dimension. If an effective
interaction of such long range were generated by the renor-
with « the screening wave number, an@n(du)s= x<{K malization group acting on the model, or if it were present
—0,Q2=0) the screened density susceptibility, which is ain a the bare action for a different effective theory that is not
nonzero number. This structure follows from, and is con-subject to the perturbative restriction of weak interactions,
trolled by, the Ward identity, as can be seen from Sec. Il Bthen this could lead to a non-Fermi-liquid ground state.
above. It is instructive to check explicitly that the nonlinear These points may be important in the context of the ongoing
o model respects the compressibility sum rule, Egl). discussion about possible non-Fermi-liquid ground states in
Within the framework of ther model, one hds 2D (clean electron system&:
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APPENDIX: PROPERTIES OF THE Q MATRICES
Here we list again the symmetry properties of ena- 1Qu=—1Qp, (r=12;i=123). (A3d)

trices that were defined in |, and add some additional re:l_ h ith the behavi der H . . . E
marks. Q is self-adjoint under the adjoint operatic@” ogether with the behavior under Hermitian conjugation, Eq.

—CTQ'C, With CB= 8,8,5i 1S5, (Alb), this further implies

Q=C"Q'C. (Ala) Q=1 L 1. (A4)
In addition, the Hermitian conjugat@’ of Q is related toQ -
by?2 for all i andr.?? Analogous relations hold fok by virtue of
+ 1 the linear coupling betwee® andA.

Q'=(73®80)'QI' " *(73®$p), (Alb) We further note that as a result of E§a3d) and(A4) the
where the similarity transformation denoted Byhas the ~matrix elementsy3°Q,; in the particle-particle spin-triplet
property channel are realnot imaginary, as erroneously stated jn |

As a result, the Gaussian thedygs.(2.36 in I] is formally
(FQr Hnm=Q_n-1-m-1- (Alc)  unstable in that channel, and the formally diverging Gaussian

We now expand our matrix fields in the spin-quaternion ba_integral needs to be int_erpretec_i. We have ascertained that a
sis defined after Eq2.9) rotation of the relevan-integration contour onto the imagi-

nary axis, which effectively make}5°Q,; imaginary, pro-

8 _ vides an interpretation that guarantees agreement with the
Q(X)= 2 (1,®5;) ;Q1AX), (A2a) well-known results of conventional perturbation thebry.
ri=o Also note that within ther model, the matrix elements 63
3 in the particle-particle spin-triplet channel are imagin@ry.
X _ NiX This follows from Eq.(Ala) in conjunction with the Hermi-
A1) r,i§=:O (7r® 1) rA1X), (A2b) ticity of Q within the ¢ model, Eq.(4.43.

*Present address: InstitutrfTheorie der kondensierten Materie, ’F. Wegner, Z. Phys. B5, 207 (1979.

Universitd Karlsruhe, 76128 Karlsruhe, Germany. 8P. W. Anderson,Basic Notions of Condensed Matter Physics
!See, e.g., G. Baym and C. Pethitlandau Fermi-Liquid Theory (Benjamin, Menlo Park, CA, 1984Chap. 5; M. E. Fishefun-
(Wiley, New York, 199). published.
’See, e.g., A. L. Fetter and D. L. Waleckauantum Theory of 9 Shankar, Rev. Mod. Phy66, 129 (1994).
Many-ParticIe SystemG\/IcGraw-HiII, New York, 1971. 1ON_ DUpUiS and G. Y. Chitov, PhyS Rev. B, 3040(1996, N.

3See, e.g., A. A. Abrikosov, L. P. Gorkov, and 1. E. Dzyaloshin-
skii, Methods of Quantum Field Theory in Statistical Physics
(Dover, New York, 197h

Dupuis, cond-mat/960418Qinpublishegt A. Houghton and J.
B. Marston, Phys. Rev. B8, 7790(1993; A. Houghton, H. J.

4B. L. Altshuler, A. G. Aronov, D. E. Khmelnitskii, and A. 1. Kwon, and J. B. Marstoripid. 50, 1351(1994; H. J. Kwon, A.
Larkin, in Quantum Theory of Solidedited by 1. M. Lifshits Houghton, and J. B. Marstoibid. 52, 8002(1995; A. Hough-
(Mir, Moscow, 1982, p. 130; B. L. Altshuler and A. G. Aronov, ton, H. J. Kwon, J. B. Marston, and R. Shankar, J. Phys.: Con-
in Electron-Electron Interactions in Disordered Systemdited dens. Matters, 4909 (1994; J. Frdilich and R. Geschmann,
by A. L. Efros and M. Pollak(North-Holland, Amsterdam, Phys. Rev. B55, 6788(1997); P. Kopietz, J. Hermisson, and K.
1985, p. 1. Schahammer,ibid. 52, 10 877 (1999; P. Kopietz and K.

5As in I, we use the term “weak localization” to refer to the Schamhammer, Z. Phys. BR0OO, 259(1996; P. Kopietz, J. Phys.:
nonanalytic behavior of electronic correlation functions in the  Condens. Matte8, 10 483(1996.
limit of zero momentum and/or frequency that is induced by!!D. Belitz and T. R. Kirkpatrick, Phys. Rev. B6, 6513(1997).
quenched disorder, or by a combination of interactions and?A. M. Finkel'stein, Zh. Esp. Teor. Fiz.84, 168 (1983 [Sov.
guenched disorder, and that occurs even if the system is far from Phys. JETP7, 97 (1983]; Z. Phys. B56, 189 (1984.
any kind of phase transition. The physical reason for thesé®D. Belitz, T.R. Kirkpatrick, and T. Vojta, Phys. Rev. 85, 9452
nonanalyticities is the diffusive motion of the electrons in the  (1997.
presence of quenched disorder. For a detailed discussion se¥L. Schder and F. Wegner, Z. Phys. 83, 113(1980; A. M. M.
e.g., Ref. 4. Pruisken and L. Sclier, Nucl. Phys. B200 [FS4], 20 (1982.
5For a review, see, D. Belitz and T. R. Kirkpatrick, Rev. Mod. See also A. J. McKane and M. Stone, Ann. PH&Y.) 131, 36
Phys.66, 261(1994). (1981.



9720 D. BELITZ, F. EVERS, AND T. R. KIRKPATRICK PRB 58

151t would be hard to actuallyprove that the Ward identity has a renormalizable to all orders. It has been checked explicitly to
diffusive structure, as a local symmetry transformation would be  one-loop order, and partially to two-loop order, see Ref. 6.
much harder to analyze than our global one. Since there is n&3C. Castellani, C. Di Castro, P. A. Lee, and M. Ma, Phys. Rev. B
reasonable doubt that our model leads to diffusive electron dy- 30, 527(1984.
namics, we thereforassume diffusive structure. Note that this 19p Belitz and T. R. Kirkpatrick, Z. Phys. B8, 513(1995.
assumption pertains to the dispersion relation of the soft mode&a_ M. Finkel'stein, zh. ,Eksp. Teor. Fiz.86, 367 (1984 [Sov.
only, not to their existence and identification in terms Qf Phys. JETF59, 212 (1984)].

1 propagators. _ ?1See, e.g., Papers presented at the Institute for Theoretical Physics
For a discussion of these algebraic structures, see, e.g., R. Conference on Non-Fermi Liquid Behavior in Metéls Phys.:
Gilmore, Lie Groups, Lie Algebras, and Some of Their Applica- Condens. Matte8, 48 (1996)].

tions (Wiley, New York, 1974. 22 . ;
Equations(2.26h and(2.29h in | were not correct.
Ystrictly speaking, this statement assumes that ¢henodel is a S(2.26 and(2.299



