1,189 research outputs found

    Relativity in Introductory Physics

    Full text link
    A century after its formulation by Einstein, it is time to incorporate special relativity early in the physics curriculum. The approach advocated here employs a simple algebraic extension of vector formalism that generates Minkowski spacetime, displays covariant symmetries, and enables calculations of boosts and spatial rotations without matrices or tensors. The approach is part of a comprehensive geometric algebra with applications in many areas of physics, but only an intuitive subset is needed at the introductory level. The approach and some of its extensions are given here and illustrated with insights into the geometry of spacetime.Comment: 29 pages, 5 figures, several typos corrected, some discussion polishe

    Overcoming the su(2^n) sufficient condition for the coherent control of n-qubit systems

    Get PDF
    We study quantum systems with even numbers N of levels that are completely state-controlled by unitary transformations generated by Lie algebras isomorphic to sp(N) of dimension N(N+1)/2. These Lie algebras are smaller than the respective su(N) with dimension N^2-1. We show that this reduction constrains the Hamiltonian to have symmetric energy levels. An example of such a system is an n-qubit system. Using a geometric representation for the quantum wave function of a finite system, we present an explicit example that shows a two-qubit system can be controlled by the elements of the Lie algebra sp(4) (isomorphic to spin(5) and so(5)) with dimension ten rather than su(4) with dimension fifteen. These results enable one to envision more efficient algorithms for the design of fields for quantum-state engineering, and they provide more insight into the fundamental structure of quantum control.Comment: 13 pp., 2 figure

    Effects of Nitrogen Quenching Gas on Spin-Exchange Optical Pumping of He-3

    Full text link
    We consider the degree of conservation of nuclear spin polarization in the process of optical pumping under typical spin-exchange optical pumping conditions. Previous analyses have assumed that negligible nuclear spin precession occurs in the brief periods of time the alkali-metal atoms are in the excited state after absorbing photons and before undergoing quenching collisions with nitrogen molecules. We include excited-state hyperfine interactions, electronic spin relaxation in collisions with He and N_2, spontaneous emission, quenching collisions, and a simplified treatment of radiation trapping

    A geometric basis for the standard-model gauge group

    Full text link
    A geometric approach to the standard model in terms of the Clifford algebra Cl_7 is advanced. A key feature of the model is its use of an algebraic spinor for one generation of leptons and quarks. Spinor transformations separate into left-sided ("exterior") and right-sided ("interior") types. By definition, Poincare transformations are exterior ones. We consider all rotations in the seven-dimensional space that (1) conserve the spacetime components of the particle and antiparticle currents and (2) do not couple the right-chiral neutrino. These rotations comprise additional exterior transformations that commute with the Poincare group and form the group SU(2)_L, interior ones that constitute SU(3)_C, and a unique group of coupled double-sided rotations with U(1)_Y symmetry. The spinor mediates a physical coupling of Poincare and isotopic symmetries within the restrictions of the Coleman--Mandula theorem. The four extra spacelike dimensions in the model form a basis for the Higgs isodoublet field, whose symmetry requires the chirality of SU(2). The charge assignments of both the fundamental fermions and the Higgs boson are produced exactly.Comment: 17 pages, LaTeX requires iopart. Accepted for publication in J. Phys. A: Math. Gen. 9 Mar 2001. Typos correcte

    A new view on relativity: Part 2. Relativistic dynamics

    Get PDF
    The Lorentz transformations are represented on the ball of relativistically admissible velocities by Einstein velocity addition and rotations. This representation is by projective maps. The relativistic dynamic equation can be derived by introducing a new principle which is analogous to the Einstein's Equivalence Principle, but can be applied for any force. By this principle, the relativistic dynamic equation is defined by an element of the Lie algebra of the above representation. If we introduce a new dynamic variable, called symmetric velocity, the above representation becomes a representation by conformal, instead of projective maps. In this variable, the relativistic dynamic equation for systems with an invariant plane, becomes a non-linear analytic equation in one complex variable. We obtain explicit solutions for the motion of a charge in uniform, mutually perpendicular electric and magnetic fields. By the above principle, we show that the relativistic dynamic equation for the four-velocity leads to an analog of the electromagnetic tensor. This indicates that force in special relativity is described by a differential two-form

    Lightlike infinity in GCA models of Spacetime

    Full text link
    This paper discusses a 7 dimensional conformal geometric algebra model for spacetime based on the notion that spacelike and timelike infinities are distinct. I show how naturally of the dimensions represents the lightlike infinity and appears redundant in computations, yet usefull in interpretationComment: 12 page

    On the Solutions of the Lorentz-Dirac Equation

    Full text link
    We discuss the unstable character of the solutions of the Lorentz-Dirac equation and stress the need of methods like order reduction to derive a physically acceptable equation of motion. The discussion is illustrated with the paradigmatic example of the non-relativistic harmonic oscillator with radiation reaction. We also illustrate removal of the noncasual pre-acceleration with the introduction of a small correction in the Lorentz-Dirac equation.Comment: 4 eps figs. to be published in GR
    • …
    corecore