The Lorentz transformations are represented on the ball of relativistically
admissible velocities by Einstein velocity addition and rotations. This
representation is by projective maps. The relativistic dynamic equation can be
derived by introducing a new principle which is analogous to the Einstein's
Equivalence Principle, but can be applied for any force. By this principle, the
relativistic dynamic equation is defined by an element of the Lie algebra of
the above representation. If we introduce a new dynamic variable, called
symmetric velocity, the above representation becomes a representation by
conformal, instead of projective maps. In this variable, the relativistic
dynamic equation for systems with an invariant plane, becomes a non-linear
analytic equation in one complex variable. We obtain explicit solutions for the
motion of a charge in uniform, mutually perpendicular electric and magnetic
fields. By the above principle, we show that the relativistic dynamic equation
for the four-velocity leads to an analog of the electromagnetic tensor. This
indicates that force in special relativity is described by a differential
two-form