388 research outputs found

    Relationship among research collaboration, number of documents and number of citations. A case study in Spanish computer science production in 2000-2009.

    Get PDF
    This paper analyzes the relationship among research collaboration, number of documents and number of citations of computer science research activity. It analyzes the number of documents and citations and how they vary by number of authors. They are also analyzed (according to author set cardinality) under different circumstances, that is, when documents are written in different types of collaboration, when documents are published in different document types, when documents are published in different computer science subdisciplines, and, finally, when documents are published by journals with different impact factor quartiles. To investigate the above relationships, this paper analyzes the publications listed in the Web of Science and produced by active Spanish university professors between 2000 and 2009, working in the computer science field. Analyzing all documents, we show that the highest percentage of documents are published by three authors, whereas single-authored documents account for the lowest percentage. By number of citations, there is no positive association between the author cardinality and citation impact. Statistical tests show that documents written by two authors receive more citations per document and year than documents published by more authors. In contrast, results do not show statistically significant differences between documents published by two authors and one author. The research findings suggest that international collaboration results on average in publications with higher citation rates than national and institutional collaborations. We also find differences regarding citation rates between journals and conferences, across different computer science subdisciplines and journal quartiles as expected. Finally, our impression is that the collaborative level (number of authors per document) will increase in the coming years, and documents published by three or four authors will be the trend in computer science literature

    Uncertainties in the determination of cross-link density by equilibrium swelling experiments in natural rubber

    Get PDF
    ABSTRACT: Equilibrium swelling is a feasible and simple experiment to determine the cross-link density of networks. It is the most popular and useful approach; however, in most of the cases, the given values are highly uncertain if not erroneous. The description of the complex thermodynamics of swollen polymer networks is usually based on the Flory-Rehner model. However, experimental evidence has shown that both the mixing term described by the Flory-Huggins expression and the elastic component derived from the affine model are only approximations that fail in the description and prediction of the rubber network behavior. This means that the Flory-Rehner treatment can only give a qualitative evaluation of cross-link density because of its strong dependence on the thermodynamic model. In this work, the uncertainties in the determination of the cross-link density in rubber materials by swelling experiments based on this model are reviewed. The implications and the validity of some of the used approximations as well as their influence in the relationship of the cross-link densities derived from swelling experiments are discussed. Importantly, swelling results are compared with results of a completely independent determination of the cross-link density by proton multiple-quantum NMR, and the correlation observed between the two methods can help to validate the thermodynamic model

    CHILES: HI morphology and galaxy environment at z=0.12 and z=0.17

    Get PDF
    We present a study of 16 HI-detected galaxies found in 178 hours of observations from Epoch 1 of the COSMOS HI Large Extragalactic Survey (CHILES). We focus on two redshift ranges between 0.108 <= z <= 0.127 and 0.162 <= z <= 0.183 which are among the worst affected by radio frequency interference (RFI). While this represents only 10% of the total frequency coverage and 18% of the total expected time on source compared to what will be the full CHILES survey, we demonstrate that our data reduction pipeline recovers high quality data even in regions severely impacted by RFI. We report on our in-depth testing of an automated spectral line source finder to produce HI total intensity maps which we present side-by-side with significance maps to evaluate the reliability of the morphology recovered by the source finder. We recommend that this become a common place manner of presenting data from upcoming HI surveys of resolved objects. We use the COSMOS 20k group catalogue, and we extract filamentary structure using the topological DisPerSE algorithm to evaluate the \hi\ morphology in the context of both local and large-scale environments and we discuss the shortcomings of both methods. Many of the detections show disturbed HI morphologies suggesting they have undergone a recent interaction which is not evident from deep optical imaging alone. Overall, the sample showcases the broad range of ways in which galaxies interact with their environment. This is a first look at the population of galaxies and their local and large-scale environments observed in HI by CHILES at redshifts beyond the z=0.1 Universe.Comment: 23 pages, 12 figures, 1 interactive 3D figure, accepted to MNRA

    Do fine root morphological and functional adaptations support regrowth success in a tropical forest restoration experiment?

    Get PDF
    In early stages of forest succession plants have a high nutrient demand, but it is still a matter of debate if regrowth success of pioneer species is related to plant functional traits favoring fast soil colonization and nutrient acquisition. In general, we would expect trade-offs between plant growth performance and fine root morphological properties in association with different plant life-history strategies. Hence, we hypothesized that fast growing plants should have a more efficient root system that allows them to outcompete slow-growing neighbors in a resource-limited environment. To test our hypothesis we monitored plant successional growth dynamics in a tropical lowland rainforest reforestation experiment conducted in southwest Costa Rica. We collected absorptive roots (<2mm diameter) from plant individuals (comprising 20 tree species and 11 plant families) with different growth dynamics (as indicated by measurements of stem diameter and height). For these samples we assessed a suite of fine root morphological traits, such as legume nodulation status, and furthermore quantified fine root nutrient concentration and phosphatase activities, as well as microbial biomass and phosphatase activity in soils in the close vicinity of fine roots. We found stark differences in fine root characteristics between the tree species investigated in this study, such that fast growing species exhibited relatively larger specific root length and higher turnover, whereas slow growing species tend to rely on mechanical resistance by increasing root tissue density and root life span. Our results suggest that the identified differences in the root trait spectrum between fast and slow growing species reflect plant functional adaptions to resource limitation, edaphic properties and soil microbial symbioses. Our findings further highlight the crucial need to foster our understanding of belowground root morphological and physiological traits during forest succession, especially so when aiming to restore forest ecosystem functioning in formerly intensified land-use systems

    Incidence of parasitoids and predators on eggs of seven species of Therididae (Araneae)

    Get PDF
    Although many characteristics of the egg sacs of spiders likely evolved to reduce the effect of parasites and predators that attack their eggs, many parasite and predator insects have become specialized on spider eggs. Eggs of six of the seven species of Theridiidae included in this study were attacked by wasp parasites (Baeus achaearaneus, Idris sp., and Comastichus zopheros), and two by the specialized spider egg predator (Neuroptera: Zeugomantispa minuta). The incidence of parasites in the egg sacs varied across species. Parasites attacked more than 60% of the egg sacs of Tidarren sisyphoides and Parasteatoda tepidariorum, but none of the sacs of Latrodectus geometricus. The incidence of parasites in the egg sacs was higher during the dry season for T. sisyphoides, and during the rainy season for P. tepidariorum. The proportion of the eggs parasitized per egg sac varied from 0.09 (± 0.19) in Nesticodes rufipes to 0.50 (± 0.46) in T. sisyphoides. Differences in the biology of parasites, as well as in the structure of spider webs and hábitat preference of spiders, may influence the incidence of parasitism and proportion of eggs parasitized in each egg sac.Vicerrectoría de InvestigaciónUCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de Biologí
    • …
    corecore