90 research outputs found

    Approaches to wind resource verification

    Get PDF
    Verification of the regional wind energy resource assessments produced by the Pacific Northwest Laboratory addresses the question: Is the magnitude of the resource given in the assessments truly representative of the area of interest? Approaches using qualitative indicators of wind speed (tree deformation, eolian features), old and new data of opportunity not at sites specifically chosen for their exposure to the wind, and data by design from locations specifically selected to be good wind sites are described. Data requirements and evaluation procedures for verifying the resource are discussed

    "Out of Mere Words": Linguistic Placement, Displacements, and Replacements in A Portrait of The Artist as a Young Man

    Get PDF
    This item was originally part of a presentation at the 2015-16 Angelo State Graduate Research Colloquium.James Joyce’s A Portrait of the Artist as a Young Man, while seemingly simple both thematically and structurally, is a deceptively complex novel which embodies the major development in Joyce’s fiction— Joyce’s movement past realism and into modernism. When reading Ulysses and Finnegans Wake, readers are painfully aware that language, philosophy, and references are functioning at a level above their, and usually the characters’, understandings. In contrast, Portrait is almost universally relatable. Due to its episodic construction, as well as the fact that the narrative focuses initially on Stephen as a child, Portrait exhibits some of Joyce’s most insightful observations about the shifting nature of language as well as how it functions on a societal level. Through parallel incidents in each of Portrait’s five chapters, Joyce shows the tendency of people and institutions to “displace” Stephen through language. Which in this case is meant to indicate an attempt to position Stephen, either consciously or unconsciously, through language or to place him in a certain role, the good Catholic, the good Irishman, the good son, the artist. Displacements may be thought of as a type of mental or psychological shift, which generally takes the form of a hallucination, a nightmare, or a contemplative daydream. Following these displacements, Joyce shows how Stephen uses language to reposition, or “replace” himself. Essentially, after being displaced, Stephen attempts to return to his previously held belief, although he often finds it insufficient. Stephen must subsequently modify his position in order to accommodate the new information, interactions, and understandings that he acquires.Carr Graduate Research Fellowshi

    Human T Regulatory Cells Can Use the Perforin Pathway to Cause Autologous Target Cell Death

    Get PDF
    AbstractCytotoxic T lymphocytes and natural killer cells use the perforin/granzyme pathway to kill virally infected cells and tumor cells. Mutations in genes important for this pathway are associated with several human diseases. CD4+ T regulatory (Treg) cells have emerged as important in the control of immunopathological processes. We have previously shown that human adaptive Treg cells preferentially express granzyme B and can kill allogeneic target cells in a perforin-dependent manner. Here, we demonstrate that activated human CD4+CD25+ natural Treg cells express granzyme A but very little granzyme B. Furthermore, both Treg subtypes display perforin-dependent cytotoxicity against autologous target cells, including activated CD4+ and CD8+ T cells, CD14+ monocytes, and both immature and mature dendritic cells. This cytotoxicity is dependent on CD18 adhesive interactions but is independent of Fas/FasL. Our findings suggest that the perforin/granzyme pathway is one of the mechanisms that Treg cells can use to control immune responses

    Spatial heterogeneity and peptide availability determine CTL killing efficiency in vivo

    Get PDF
    The rate at which a cytotoxic T lymphocyte (CTL) can survey for infected cells is a key ingredient of models of vertebrate immune responses to intracellular pathogens. Estimates have been obtained using in vivo cytotoxicity assays in which peptide-pulsed splenocytes are killed by CTL in the spleens of immunised mice. However the spleen is a heterogeneous environment and splenocytes comprise multiple cell types. Are some cell types intrinsically more susceptible to lysis than others? Quantitatively, what impacts are made by the spatial distribution of targets and effectors, and the level of peptide-MHC on the target cell surface? To address these questions we revisited the splenocyte killing assay, using CTL specific for an epitope of influenza virus. We found that at the cell population level T cell targets were killed more rapidly than B cells. Using modeling, quantitative imaging and in vitro killing assays we conclude that this difference in vivo likely reflects different migratory patterns of targets within the spleen and a heterogeneous distribution of CTL, with no detectable difference in the intrinsic susceptibilities of the two populations to lysis. Modeling of the stages involved in the detection and killing of peptide-pulsed targets in vitro revealed that peptide dose influenced the ability of CTL to form conjugates with targets but had no detectable effect on the probability that conjugation resulted in lysis, and that T cell targets took longer to lyse than B cells. We also infer that incomplete killing in vivo of cells pulsed with low doses of peptide may be due to a combination of heterogeneity in peptide uptake and the dissociation, but not internalisation, of peptide-MHC complexes. Our analyses demonstrate how population-averaged parameters in models of immune responses can be dissected to account for both spatial and cellular heterogeneity

    ATG16L1 orchestrates interleukin-22 signaling in the intestinal epithelium via cGAS-STING.

    Get PDF
    A coding variant of the inflammatory bowel disease (IBD) risk gene ATG16L1 has been associated with defective autophagy and deregulation of endoplasmic reticulum (ER) function. IL-22 is a barrier protective cytokine by inducing regeneration and antimicrobial responses in the intestinal mucosa. We show that ATG16L1 critically orchestrates IL-22 signaling in the intestinal epithelium. IL-22 stimulation physiologically leads to transient ER stress and subsequent activation of STING-dependent type I interferon (IFN-I) signaling, which is augmented in Atg16l1 ΔIEC intestinal organoids. IFN-I signals amplify epithelial TNF production downstream of IL-22 and contribute to necroptotic cell death. In vivo, IL-22 treatment in Atg16l1 ΔIEC and Atg16l1 ΔIEC/Xbp1 ΔIEC mice potentiates endogenous ileal inflammation and causes widespread necroptotic epithelial cell death. Therapeutic blockade of IFN-I signaling ameliorates IL-22-induced ileal inflammation in Atg16l1 ΔIEC mice. Our data demonstrate an unexpected role of ATG16L1 in coordinating the outcome of IL-22 signaling in the intestinal epithelium

    Revisiting Estimates of CTL Killing Rates In Vivo

    Get PDF
    Recent experimental advances have allowed the estimation of the in vivo rates of killing of infected target cells by cytotoxic T lymphocytes (CTL). We present several refinements to a method applied previously to quantify killing of targets in the spleen using a dynamical model. We reanalyse data previously used to estimate killing rates of CTL specific for two epitopes of lymphocytic choriomeningitis virus (LCMV) in mice and show that, contrary to previous estimates the “killing rate” of effector CTL is approximately twice that of memory CTL. Further, our method allows the fits to be visualized, and reveals one potentially interesting discrepancy between fits and data. We discuss extensions to the basic CTL killing model to explain this discrepancy and propose experimental tests to distinguish between them

    Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3

    Full text link
    Missense mutations in the CIAS1 gene cause three autoinflammatory disorders: familial cold autoinflammatory syndrome, Muckle-Wells syndrome and neonatal-onset multiple-system inflammatory disease(1). Cryopyrin (also called Nalp3), the product of CIAS1, is a member of the NOD-LRR protein family that has been linked to the activation of intracellular host defence signalling pathways(2,3). Cryopyrin forms a multi-protein complex termed 'the inflammasome', which contains the apoptosis-associated speck-like protein (ASC) and caspase-1, and promotes caspase-1 activation and processing of pro-interleukin (IL)-1 beta (ref. 4). Here we show the effect of cryopyrin deficiency on inflammasome function and immune responses. Cryopyrin and ASC are essential for caspase-1 activation and IL-1 beta and IL-18 production in response to bacterial RNA and the imidazoquinoline compounds R837 and R848. In contrast, secretion of tumour-necrosis factor-alpha and IL-6, as well as activation of NF-kappa B and mitogen-activated protein kinases (MAPKs) were unaffected by cryopyrin deficiency. Furthermore, we show that Toll-like receptors and cryopyrin control the secretion of IL-1 beta and IL-18 through different intracellular pathways. These results reveal a critical role for cryopyrin in host defence through bacterial RNA-mediated activation of caspase-1, and provide insights regarding the pathogenesis of autoinflammatory syndromes.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62569/1/nature04517.pd

    Hepatitis B Virus Impairs TLR9 Expression and Function in Plasmacytoid Dendritic Cells

    Get PDF
    Plasmacytoid dendritic cells (pDCs) play a key role in detecting pathogens by producing large amounts of type I interferon (IFN) by sensing the presence of viral infections through the Toll-Like Receptor (TLR) pathway. TLR9 is a sensor of viral and bacterial DNA motifs and activates the IRF7 transcription factor which leads to type I IFN secretion by pDCs. However, during chronic hepatitis B virus (HBV) infection, pDCs display an impaired ability to secrete IFN-α following ex vivo stimulation with TLR9 ligands. Here we highlight several strategies used by HBV to block IFN-α production through a specific impairment of the TLR9 signaling. Our results show that HBV particle internalisation could inhibit TLR9- but not TLR7-mediated secretion of IFN-α by pDCs. We observed that HBV down-regulated TLR9 transcriptional activity in pDCs and B cells in which TLR9 mRNA and protein levels were reduced. HBV can interfere with TLR9 activity by blocking the MyD88-IRAK4 axis and Sendai virus targeting IRF7 to block IFN-α production. Neutralising CpG motif sequences were identified within HBV DNA genome of genotypes A to H which displayed a suppressive effect on TLR9-immune activation. Moreover, TLR9 mRNA and protein were downregulated in PBMCs from patients with HBV-associated chronic hepatitis and hepatocellular carcinoma. Thus HBV has developed several escape mechanisms to avoid TLR9 activation in both pDCs and B lymphocytes, which may in turn contribute to the establishment and/or persistence of chronic infection

    Investigating CTL Mediated Killing with a 3D Cellular Automaton

    Get PDF
    Cytotoxic T lymphocytes (CTLs) are important immune effectors against intra-cellular pathogens. These cells search for infected cells and kill them. Recently developed experimental methods in combination with mathematical models allow for the quantification of the efficacy of CTL killing in vivo and, hence, for the estimation of parameters that characterize the effect of CTL killing on the target cell populations. It is not known how these population-level parameters relate to single-cell properties. To address this question, we developed a three-dimensional cellular automaton model of the region of the spleen where CTL killing takes place. The cellular automaton model describes the movement of different cell populations and their interactions. Cell movement patterns in our cellular automaton model agree with observations from two-photon microscopy. We find that, despite the strong spatial nature of the kinetics in our cellular automaton model, the killing of target cells by CTLs can be described by a term which is linear in the target cell frequency and saturates with respect to the CTL levels. Further, we find that the parameters describing CTL killing on the population level are most strongly impacted by the time a CTL needs to kill a target cell. This suggests that the killing of target cells, rather than their localization, is the limiting step in CTL killing dynamics given reasonable frequencies of CTL. Our analysis identifies additional experimental directions which are of particular importance to interpret estimates of killing rates and could advance our quantitative understanding of CTL killing
    • …
    corecore