142 research outputs found

    Symbiotic Legume Nodules Employ Both Rhizobial Exo- and Endo-Hydrogenases to Recycle Hydrogen Produced by Nitrogen Fixation

    Get PDF
    BACKGROUND: In symbiotic legume nodules, endosymbiotic rhizobia (bacteroids) fix atmospheric N(2), an ATP-dependent catalytic process yielding stoichiometric ammonium and hydrogen gas (H(2)). While in most legume nodules this H(2) is quantitatively evolved, which loss drains metabolic energy, certain bacteroid strains employ uptake hydrogenase activity and thus evolve little or no H(2). Rather, endogenous H(2) is efficiently respired at the expense of O(2), driving oxidative phosphorylation, recouping ATP used for H(2) production, and increasing the efficiency of symbiotic nodule N(2) fixation. In many ensuing investigations since its discovery as a physiological process, bacteroid uptake hydrogenase activity has been presumed a single entity. METHODOLOGY/PRINCIPAL FINDINGS: Azorhizobium caulinodans, the nodule endosymbiont of Sesbania rostrata stems and roots, possesses both orthodox respiratory (exo-)hydrogenase and novel (endo-)hydrogenase activities. These two respiratory hydrogenases are structurally quite distinct and encoded by disparate, unlinked gene-sets. As shown here, in S. rostrata symbiotic nodules, haploid A. caulinodans bacteroids carrying single knockout alleles in either exo- or-endo-hydrogenase structural genes, like the wild-type parent, evolve no detectable H(2) and thus are fully competent for endogenous H(2) recycling. Whereas, nodules formed with A. caulinodans exo-, endo-hydrogenase double-mutants evolve endogenous H(2) quantitatively and thus suffer complete loss of H(2) recycling capability. More generally, from bioinformatic analyses, diazotrophic microaerophiles, including rhizobia, which respire H(2) may carry both exo- and endo-hydrogenase gene-sets. CONCLUSIONS/SIGNIFICANCE: In symbiotic S. rostrata nodules, A. caulinodans bacteroids can use either respiratory hydrogenase to recycle endogenous H(2) produced by N(2) fixation. Thus, H(2) recycling by symbiotic legume nodules may involve multiple respiratory hydrogenases

    Mutagenesis and Functional Studies with Succinate Dehydrogenase Inhibitors in the Wheat Pathogen Mycosphaerella graminicola

    Get PDF
    A range of novel carboxamide fungicides, inhibitors of the succinate dehydrogenase enzyme (SDH, EC 1.3.5.1) is currently being introduced to the crop protection market. The aim of this study was to explore the impact of structurally distinct carboxamides on target site resistance development and to assess possible impact on fitness

    Current status of the multinational Arabidopsis community

    Get PDF
    The multinational Arabidopsis research community is highly collaborative and over the past thirty years these activities have been documented by the Multinational Arabidopsis Steering Committee (MASC). Here, we (a) highlight recent research advances made with the reference plant Arabidopsis thaliana; (b) provide summaries from recent reports submitted by MASC subcommittees, projects and resources associated with MASC and from MASC country representatives; and (c) initiate a call for ideas and foci for the “fourth decadal roadmap,” which will advise and coordinate the global activities of the Arabidopsis research community

    Phylogenomic analysis of the Chlamydomonas genome unmasks proteins potentially involved in photosynthetic function and regulation

    Get PDF
    Chlamydomonas reinhardtii, a unicellular green alga, has been exploited as a reference organism for identifying proteins and activities associated with the photosynthetic apparatus and the functioning of chloroplasts. Recently, the full genome sequence of Chlamydomonas was generated and a set of gene models, representing all genes on the genome, was developed. Using these gene models, and gene models developed for the genomes of other organisms, a phylogenomic, comparative analysis was performed to identify proteins encoded on the Chlamydomonas genome which were likely involved in chloroplast functions (or specifically associated with the green algal lineage); this set of proteins has been designated the GreenCut. Further analyses of those GreenCut proteins with uncharacterized functions and the generation of mutant strains aberrant for these proteins are beginning to unmask new layers of functionality/regulation that are integrated into the workings of the photosynthetic apparatus

    ‘The Best and the Brightest’: Widening Participation and Social Justice in Contemporary English Social Work Education

    Get PDF
    Social work education in England has a long track record of success in widening participation to disadvantaged student populations. However, more recently these successes have instead been cast as a burden that is negatively impacting on the calibre of students entering the profession. Alongside this reconceptualisation, new fast-track models of education have been introduced, providing a quicker and more financially supported a route of entry to the profession. This article critically examines the changing nature of widening participation in social work education and how fast-track social work programmes are perpetuating the inequalities that are inherent at all levels of the English educational system. This discussion is shown to have implications for widening participation policy agenda beyond social work. The concerns that are raised should be of interest to any other jurisdictions considering the possibility of a fast-track approach to social work education. A social justice approach-based bringing students together is proposed as an alternative and preferable model of social work education

    Current status of the multinational Arabidopsis community

    Get PDF
    The multinational Arabidopsis research community is highly collaborative and over the past thirty years these activities have been documented by the Multinational Arabidopsis Steering Committee (MASC). Here, we (a) highlight recent research advances made with the reference plant Arabidopsis thaliana; (b) provide summaries from recent reports submitted by MASC subcommittees, projects and resources associated with MASC and from MASC country representatives; and (c) initiate a call for ideas and foci for the “fourth decadal roadmap,” which will advise and coordinate the global activities of the Arabidopsis research community

    Proteome analysis of chloroplast mRNA processing and degradation

    Full text link
    Chloroplasts have a complex enzymatic machinery to adjust the relative half-life of their mRNAs to environmental signals. Soluble protein extracts from spinach (Spinacia oleracea L.) chloroplasts that correctly reproduce in vitro the differential mRNA stability observed in vivo were analyzed using shotgun proteomics to identify the proteins that are potentially involved in this process. The combination of a novel strategy for the database-independent detection of proteins from MS/MS data with standard database searches allowed us to identify 243 proteins with high confidence, which include several nucleases and RNA binding proteins but also proteins that have no reported function in chloroplast mRNA metabolism. Characterization of enzyme activities that adjust mRNA stability in response to illumination revealed that the dark-induced RNA degradation pathway involves enzymatic activities that differ from those that direct RNA processing and stabilization in the light. Dark-induced mRNA degradation comprises a MgCl2-independent and a MgCl2-dependent step, which releases nucleoside di- and monophosphates from the petD 3'-UTR precursor substrate. RNA degradation can be blocked with RNasin, a potent inhibitor of eukaryotic ribonucleases, suggesting that chloroplast mRNA degradation involves enzymes that are distinct from those found in prokaryotic-type RNA degradation. On the basis of the identified proteins and the in vitro characterization of the RNA degradation activities, we discuss scenarios and components that potentially determine plastid mRNA stability

    Ueber die Resorption alkalischer Erden im Verdauungstract

    No full text
    corecore