191 research outputs found

    Targeting sphingosine kinase-1 with the low MW inhibitor SKI-5C suppresses the development of endometriotic lesions in mice

    Get PDF
    Background and Purpose Limited evidence suggests that the sphingosine-1-phosphate/sphingosine kinase 1 (S1P/SPHK1) signalling pathway is involved in the pathogenesis of endometriosis. Therefore, we analyzed in this study whether the inhibition of SPHK1 and, consequently, decreased levels of S1P affected the vascularization and growth of endometriotic lesions. Experimental Approach Endometriotic lesions were surgically induced in the peritoneal cavity and the dorsal skinfold chamber of female BALB/c mice. The animals received a daily dose of the SPHK1 inhibitor SKI-5C or vehicle (control). Analyses involved the determination of lesion growth, cyst formation, microvessel density and cell proliferation within peritoneal endometriotic lesions by means of high-resolution ultrasound imaging, caliper measurement, histology and immunohistochemistry. In the dorsal skinfold chamber model the development of newly formed microvascular networks and their microhemodynamic parameters within endometriotic lesions were investigated by means of intravital fluorescence microscopy. Key Results SKI-5C significantly inhibited the development and vascularization of peritoneal endometriotic lesions, as indicated by a reduced growth and cyst formation, a lower microvessel density and a suppressed cell proliferation, when compared to vehicle-treated controls. Endometriotic lesions in dorsal skinfold chambers of SKI-5C-treated animals exhibited a significantly smaller lesion size, lower functional microvessel density, smaller microvessel diameters and a reduced blood perfusion of the newly developing microvascular networks. Conclusions and Implications SPHK1/S1P signalling promotes the establishment and progression of endometriotic lesions. The inhibition of this pathway suppresses the development of endometriotic lesions, suggesting SPHK1 as a potential novel target for future endometriosis therapy

    Indole-3-Carbinol Inhibits the Growth of Endometriotic Lesions by Suppression of Microvascular Network Formation

    Get PDF
    Endometriosis represents an estrogen‑dependent disorder with a complex pathophysiol‑ ogy. Phytochemicals are promising candidates for endometriosis therapy, because they simulta‑ neously target different cellular processes involved in the pathogenesis of endometriosis. Herein, we analyzed whether indole‑3‑carbinol (I3C) suppresses the development of endometriotic lesions, which were surgically induced by fixation of uterine tissue samples (diameter: 2 mm) from female BALB/c donor mice to the peritoneum of recipient animals. The mice received either I3C or ve‑ hicle (control) by peroral administration once per day. Growth, cyst formation, cell proliferation, microvascularization and protein expression of the lesions were assessed by high‑resolution ultra‑ sound imaging, caliper measurements, histology, immunohistochemistry and Western blotting. I3C inhibited the vascularization and growth of endometriotic lesions without inducing anti‑angiogenic and anti‑proliferative side effects on reproductive organs. This was associated with a significantly reduced number of proliferating stromal and endothelial cells and a lower expression of the pro‑ angiogenic signaling molecules vascular endothelial growth factor receptor‑2 (VEGFR2), phospho‑ inositide 3‑kinase (PI3K) and phosphorylated extracellular signal‑regulated kinase (pERK) within I3C‑treated lesions when compared to controls. These findings indicate that I3C effectively inhibits endometriotic lesion formation in mice. Thus, further studies should clarify whether I3C may be also beneficial for the prevention and therapy of the human disease

    The ischemic time window of ectopic endometrial tissue crucially determines its ability to develop into endometriotic lesions

    Get PDF
    Endometriosis develop from shed endometrial fragments via retrograde menstruation. This afects the survival, proliferation and vascularization of the tissue and its fnal ability to form endometriotic lesions. Within this study, uterine tissue samples from donor mice were precultivated for 24 h or 72 h to simulate avascular periods. Their morphology, microvessel density, apoptotic activity and expression of angiogenesis-related proteins were analyzed in vitro. The formation of endometriotic lesions in vivo was assessed after transplantation of precultivated uterine tissue samples to the abdominal wall and dorsal skinfold chambers by means of high-resolution ultrasound, intravital fuorescence microscopy, histology and immunohistochemistry. In vitro, 72-h-precultivated uterine tissue samples exhibit extensive areas of tissue necrosis and high numbers of apoptotic cells as well as a signifcantly reduced cell and microvessel density. These samples failed to develop into endometriotic lesions. In contrast, the 24-h-precultivated samples showed, that their early vascularization and growth in vivo was improved when compared to controls. This indicates that avascular periods have a strong impact on the survival of ectopic endometrial tissue and the chance for the development of endometriosis

    Extended Classical Over-Barrier Model for Collisions of Highly Charged Ions with Conducting and Insulating Surfaces

    Full text link
    We have extended the classical over-barrier model to simulate the neutralization dynamics of highly charged ions interacting under grazing incidence with conducting and insulating surfaces. Our calculations are based on simple model rates for resonant and Auger transitions. We include effects caused by the dielectric response of the target and, for insulators, localized surface charges. Characteristic deviations regarding the charge transfer processes from conducting and insulating targets to the ion are discussed. We find good agreement with previously published experimental data for the image energy gain of a variety of highly charged ions impinging on Au, Al, LiF and KI crystals.Comment: 32 pages http://pikp28.uni-muenster.de/~ducree

    Evaluation of Electrochemotherapy with Bleomycin in the Treatment of Colorectal Hepatic Metastases in a Rat Model

    Get PDF
    Background: The available ablative procedures for the treatment of hepatic cancer have contraindications due to the heat-sink effect and the risk of thermal injuries. Electrochemotherapy (ECT) as a nonthermal approach may be utilized for the treatment of tumors adjacent to high-risk regions. We evaluated the effectiveness of ECT in a rat model. Methods: WAG/Rij rats were randomized to four groups and underwent ECT, reversible electroporation (rEP), or intravenous injection of bleomycin (BLM) eight days after subcapsular hepatic tumor implantation. The fourth group served as Sham. Tumor volume and oxygenation were measured before and five days after the treatment using ultrasound and photoacoustic imaging; thereafter, liver and tumor tissue were additionally analysed by histology and immunohistochemistry. Results: The ECT group showed a stronger reduction in tumor oxygenation compared to the rEP and BLM groups; moreover, ECTtreated tumors exhibited the lowest levels of hemoglobin concentration compared to the other groups. Histological analyses further revealed a significantly increased tumor necrosis of >85% and a reduced tumor vascularization in the ECT group compared to the rEP, BLM, and Sham groups. Conclusion: ECT is an effective approach for the treatment of hepatic tumors with necrosis rates >85% five days following treatment

    Electronic structure and spectroscopy of the quaternary Heusler alloy Co2_2Cr1x_{1-x}Fex_{x}Al

    Full text link
    Quaternary Heusler alloys Co2_2Cr1x_{1-x}Fex_{x}Al with varying Cr to Fe ratio xx were investigated experimentally and theoretically. The electronic structure and spectroscopic properties were calculated using the full relativistic Korringa-Kohn-Rostocker method with coherent potential approximation to account for the random distribution of Cr and Fe atoms as well as random disorder. Magnetic effects are included by the use of spin dependent potentials in the local spin density approximation. Magnetic circular dichroism in X-ray absorption was measured at the L2,3L_{2,3} edges of Co, Fe, and Cr of the pure compounds and the x=0.4x=0.4 alloy in order to determine element specific magnetic moments. Calculations and measurements show an increase of the magnetic moments with increasing iron content. Resonant (560eV - 800eV) soft X-ray as well as high resolution - high energy (3.5\geq 3.5keV) hard X-ray photo emission was used to probe the density of the occupied states in Co2_2Cr0.6_{0.6}Fe0.4_{0.4}Al.Comment: J.Phys.D_Appl.Phys. accepte

    Effect of transport-induced charge inhomogeneity on point-contact Andreev reflection spectra at ferromagnet-superconductor interfaces

    Full text link
    We investigate the transport properties of a ferromagnet-superconductor interface within the framework of a modified three-dimensional Blonder-Tinkham-Klapwijk formalism. In particular, we propose that charge inhomogeneity forms via two unique transport mechanisms, namely, evanescent Andreev reflection and evanescent quasiparticle transmission. Furthermore, we take into account the influence of charge inhomogeneity on the interfacial barrier potential and calculate the conductance as a function of bias voltage. Point-contact Andreev reflection (PCAR) spectra often show dip structures, large zero-bias conductance enhancement, and additional zero-bias conductance peak. Our results indicate that transport-induced charge inhomogeneity could be a source of all these anomalous characteristics of the PCAR spectra.Comment: 9 pages, 6 figure

    Identifying Farming Strategies Associated With Achieving Global Agricultural Sustainability

    Get PDF
    Sustainable agroecosystems provide adequate food while supporting environmental and human wellbeing and are a key part of the United Nations Sustainable Development Goals (SDGs). Some strategies to promote sustainability include reducing inputs, substituting conventional crops with genetically modified (GM) alternatives, and using organic production. Here, we leveraged global databases covering 121 countries to determine which farming strategies—the amount of inputs per area (fertilizers, pesticides, and irrigation), GM crops, and percent agriculture in organic production—are most correlated with 12 sustainability metrics recognized by the United Nations Food and Agriculture Organization. Using quantile regression, we found that countries with higher Human Development Indices (HDI) (including education, income, and lifespan), higher-income equality, lower food insecurity, and higher cereal yields had the most organic production and inputs. However, input-intensive strategies were associated with greater agricultural greenhouse gas emissions. In contrast, countries with more GM crops were last on track to meeting the SDG of reduced inequalities. Using a longitudinal analysis spanning 2004–2018, we found that countries were generally decreasing inputs and increasing their share of agriculture in organic production. Also, in disentangling correlation vs. causation, we hypothesize that a country's development is more likely to drive changes in agricultural strategies than vice versa. Altogether, our correlative analyses suggest that countries with greater progress toward the SDGs of no poverty, zero hunger, good health and wellbeing, quality education, decent work, economic growth, and reduced inequalities had the highest production of organic agriculture and, to a lesser extent, intensive use of inputs
    corecore