89 research outputs found
Sounding of the Cleft Ion Fountain Energization Region
The objectives of the ground-based observations in support of the SCIFER are: Acquire and display ionospheric conditions prior to launch to aid in the establishment of launch criteria in real time. Observers at both stations participated in real-time visual interpretation. Solar wind data from IMP-8 and WIND were acquired and interpreted in real time. Telephonic and data links were established at the observatory for the launch window period. Ground-based observatory countdown and launch criteria were developed. 2) Relate optical and magnetic ionospheric signatures observed from the ground to magnetospheric boundaries in the energetic particle flux measured at the payload. The energetic electron trapping boundary was found to correspond to the equatorward edge of the discrete auroral arcs forming the dayside aurora. The energetic electron trapping boundary was found to correspond to the poleward edge of pulsating aurora. The pulsating aurora was found to correspond to one second bursts of energy-dispersed electrons originating in the equatorial plane. Pulsations at larger intervals corresponded to travel times to the conjugate region and return. The pulsating aurora was also directly linked to the geomagnetic pulsations and traveling magnetic vortices, all occurring equatorward of the trapping boundary. 630 nm emission corresponding to less than 10 eV electron precipitation was observed equatorward of the trapping boundary (L=15) and ascribed to photoelectrons from the sunlit conjugate region. 3) Aid in the interpretation of time/space incongruities in the rocket data. The motion of the payload conjugate across the aurora showed that the payload passed over three distinct arc systems on the poleward side of the trapping boundary. These results were reported in a series of articles to be printed in Geophysical Research Letters on June 15, l996
Observation of the solar soft X-ray component; study of its relation to transient and slowly-varying phenomena observed at other wavelengths
Solar X-rays from 8–12 Å have been observed with an ion chamber photometer and fluxes derived from the observations after an assumption concerning the spectral distribution. The time variation of the X-ray flux correlates well with the radio flux, plage index, and sunspot number. Comparisons of X-ray and optical events are given; flares seem to produce soft X-rays, but some soft X-ray bursts are apparently not associated with flares. The total energy involved in the soft X-ray bursts may be a significant amount of the total flare radiation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43747/1/11207_2004_Article_BF00150944.pd
Relationship between sawtooth events and magnetic storms
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95681/1/jgra21163.pd
Solar soft X-rays and solar activity
Soft solar X-rays (8 ⩽ gl ⩽ 12 Å) were observed from OSO-III. An analysis of the X-ray enhancements associated with 165 solar flares revealed that there is a tendency for a weak soft X-ray enhancement to precede the cm- λ burst and H α flare. The peak soft X-ray flux follows the cm- λ peak by about 4 min, on the average. Additionally, it was found that flare-rich active centers tend to produce flares which are stronger X-ray and cm- λ emitters than are flares which take place in flare-poor active centers.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43754/1/11207_2004_Article_BF00155382.pd
Solar soft X-rays and solar activity
Peak fluxes of flare-associated 8–12 Å X-ray bursts occur at or near the time of the maximum energy content of the soft X-ray source volume. The amplitudes of flare-associated bursts may thus be used as a measure of the energy deposited in the source volume by non-thermal electrons and other processes. In the mean, the soft X-ray burst amplitude is apparently independent of the occurrence of a type III event. This is interpreted to indicate that electrons accelerated by the type III process do not directly participate in establishing the soft X-ray source volume.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43724/1/11207_2004_Article_BF00153386.pd
New Perspectives on Substorm Injections
There has been significant progress in understanding substorm injections since the Third International Conference on Substorms in 1996. Progress has come from a combination of new theories, quantitative modeling, and observations--particularly multi-satellite observations. There is now mounting evidence that fast convective flows are the mechanism that directly couples substorm processes in the mid tail, where reconnection occurs, with substorm processes the inner magnetosphere where Pi2 pulsations, auroral breakups, and substorm injections occur. This paper presents evidence that those flows combined with an earthward-propagating compressional wave are responsible for substorm injections and discusses how that model can account for various substorm injection signatures
The Earth: Plasma Sources, Losses, and Transport Processes
This paper reviews the state of knowledge concerning the source of magnetospheric plasma at Earth. Source of plasma, its acceleration and transport throughout the system, its consequences on system dynamics, and its loss are all discussed. Both observational and modeling advances since the last time this subject was covered in detail (Hultqvist et al., Magnetospheric Plasma Sources and Losses, 1999) are addressed
- …