320 research outputs found

    Managing Dynamic User Communities in a Grid of Autonomous Resources

    Get PDF
    One of the fundamental concepts in Grid computing is the creation of Virtual Organizations (VO's): a set of resource consumers and providers that join forces to solve a common problem. Typical examples of Virtual Organizations include collaborations formed around the Large Hadron Collider (LHC) experiments. To date, Grid computing has been applied on a relatively small scale, linking dozens of users to a dozen resources, and management of these VO's was a largely manual operation. With the advance of large collaboration, linking more than 10000 users with a 1000 sites in 150 counties, a comprehensive, automated management system is required. It should be simple enough not to deter users, while at the same time ensuring local site autonomy. The VO Management Service (VOMS), developed by the EU DataGrid and DataTAG projects[1, 2], is a secured system for managing authorization for users and resources in virtual organizations. It extends the existing Grid Security Infrastructure[3] architecture with embedded VO affiliation assertions that can be independently verified by all VO members and resource providers. Within the EU DataGrid project, Grid services for job submission, file- and database access are being equipped with fine- grained authorization systems that take VO membership into account. These also give resource owners the ability to ensure site security and enforce local access policies. This paper will describe the EU DataGrid security architecture, the VO membership service and the local site enforcement mechanisms Local Centre Authorization Service (LCAS), Local Credential Mapping Service(LCMAPS) and the Java Trust and Authorization Manager.Comment: Talk from the 2003 Computing in High Energy and Nuclear Physics (CHEP03), La Jolla, Ca, USA, March 2003, 7 pages, LaTeX, 5 eps figures. PSN TUBT00

    Incorporating hydrology into climate suitability models changes projections of malaria transmission in Africa

    Get PDF
    Continental-scale models of malaria climate suitability typically couple well-established temperature-response models with basic estimates of vector habitat availability using rainfall as a proxy. Here we show that across continental Africa, the estimated geographic range of climatic suitability for malaria transmission is more sensitive to the precipitation threshold than the thermal response curve applied. To address this problem we use downscaled daily climate predictions from seven GCMs to run a continental-scale hydrological model for a process-based representation of mosquito breeding habitat availability. A more complex pattern of malaria suitability emerges as water is routed through drainage networks and river corridors serve as year-round transmission foci. The estimated hydro-climatically suitable area for stable malaria transmission is smaller than previous models suggest and shows only a very small increase in state-of-the-art future climate scenarios. However, bigger geographical shifts are observed than with most rainfall threshold models and the pattern of that shift is very different when using a hydrological model to estimate surface water availability for vector breeding

    Expanding the set of rhodococcal Baeyer–Villiger monooxygenases by high-throughput cloning, expression and substrate screening

    Get PDF
    To expand the available set of Baeyer–Villiger monooxygenases (BVMOs), we have created expression constructs for producing 22 Type I BVMOs that are present in the genome of Rhodococcus jostii RHA1. Each BVMO has been probed with a large panel of potential substrates. Except for testing their substrate acceptance, also the enantioselectivity of some selected BVMOs was studied. The results provide insight into the biocatalytic potential of this collection of BVMOs and expand the biocatalytic repertoire known for BVMOs. This study also sheds light on the catalytic capacity of this large set of BVMOs that is present in this specific actinomycete. Furthermore, a comparative sequence analysis revealed a new BVMO-typifying sequence motif. This motif represents a useful tool for effective future genome mining efforts.

    Aspectos sanitários dos núcleos de conservação in situ de bovinos pantaneiros.

    Get PDF
    Este trabalho teve como objetivo a avaliação sorológica dos rebanhos de dois núcleos de conservação de bovinos Pantaneiros existentes na região do Pantanal (C1 em Corumbá-MS e C2 em Poconé-MT), para as seguintes enfermidades: brucelose, tuberculose, leptospirose, neosporose, toxoplasmose, leucose, rinotraqueíte infecciosa bovina (IBR) e diarréia viral bovina (BVD).bitstream/item/79834/1/BP103.pd

    Investigating the coenzyme specificity of phenylacetone monooxygenase from Thermobifida fusca

    Get PDF
    Type I Baeyer–Villiger monooxygenases (BVMOs) strongly prefer NADPH over NADH as an electron donor. In order to elucidate the molecular basis for this coenzyme specificity, we have performed a site-directed mutagenesis study on phenylacetone monooxygenase (PAMO) from Thermobifida fusca. Using sequence alignments of type I BVMOs and crystal structures of PAMO and cyclohexanone monooxygenase in complex with NADP+, we identified four residues that could interact with the 2′-phosphate moiety of NADPH in PAMO. The mutagenesis study revealed that the conserved R217 is essential for binding the adenine moiety of the nicotinamide coenzyme while it also contributes to the recognition of the 2′-phosphate moiety of NADPH. The substitution of T218 did not have a strong effect on the coenzyme specificity. The H220N and H220Q mutants exhibited a ~3-fold improvement in the catalytic efficiency with NADH while the catalytic efficiency with NADPH was hardly affected. Mutating K336 did not increase the activity of PAMO with NADH, but it had a significant and beneficial effect on the enantioselectivity of Baeyer–Villiger oxidations and sulfoxidations. In conclusion, our results indicate that the function of NADPH in catalysis cannot be easily replaced by NADH. This finding is in line with the complex catalytic mechanism and the vital role of the coenzyme in BVMOs

    Treatment challenges in and outside a network setting: Head and neck cancers

    Get PDF
    Head and neck cancer (HNC) is a rare disease that can affect different sites and is characterized by variable incidence and 5-year survival rates across Europe. Multiple factors need to be considered when choosing the most appropriate treatment for HNC patients, such as age, comorbidities, social issues, and especially whether to prefer surgery or radiation-based protocols. Given the complexity of this scenario, the creation of a highly specialized multidisciplinary team is recommended to guarantee the best oncological outcome and prevent or adequately treat any adverse effect. Data from literature suggest that the multidisciplinary team-based approach is beneficial for HNC patients and lead to improved survival rates. This result is likely due to improved diagnostic and staging accuracy, a more efficacious therapeutic approach and enhanced communication across disciplines. Despite the benefit of MTD, it must be noted that this approach requires considerable time, effort and financial resources and is usually more frequent in highly organized and high-volume centers. Literature data on clinical research suggest that patients treated in high-accrual centers report better treatment outcomes compared to patients treated in low-volume centers, where a lower radiotherapy-compliance and worst overall survival have been reported. There is general agreement that treatment of rare cancers such as HNC should be concentrated in high volume, specialized and multidisciplinary centers. In order to achieve this goal, the creation of international collaboration network is fundamental. The European Reference Networks for example aim to create an international virtual advisory board, whose objectives are the exchange of expertise, training, clinical collaboration and the reduction of disparities and enhancement of rationalize migration across Europe. The purpose of our work is to review all aspects and challenges in and outside this network setting planned for the management of HNC patients
    corecore