59 research outputs found

    LCA of a Non-thermal Production of Pure Hydrogen from Biomass

    Get PDF

    LRG-BEASTS: Evidence for clouds in the transmission spectrum of HATS-46 b

    Get PDF
    We have performed low-resolution ground-based spectroscopy of HATS-46 b in transmission, using the EFOSC2 instrument on the ESO New Technology Telescope (NTT). HATS-46 b is a highly-inflated exoplanet that is a prime target for transmission spectroscopy, having a Jupiter-like radius (0.95 RJup_\textrm{Jup}) but a much lower mass (0.16 MJup_\textrm{Jup}). It orbits a G-type star with a 4.7 d period, giving an equilibrium temperature of 1100 K. We observed one transit of HATS-46 b with the NTT, with the time-series spectra covering a wavelength range of 3900 - 9000 Angstrom at a resolution of R380R \sim 380. We achieved a remarkably precise transmission spectrum of 1.03 ×\times photon noise, with a median uncertainty of 357357 ppm for 200\sim 200 Angstrom wide bins, despite the relative faintness of the host star with Vmag=13.6V_{\mathrm{mag}} = 13.6. The transmission spectrum does not show strong absorption features and retrievals favour a cloudy model, ruling out a clear atmosphere with 3.0σ3.0\sigma confidence. We also place a conservative upper limit on the sodium abundance under the alternative scenario of a clear atmosphere. This is the eighth planet in the LRG-BEASTS survey, which uses 4m-class telescopes such as the NTT to obtain low-resolution transmission spectra of hot Jupiters with precisions of around one atmospheric scale height.Comment: 10 pages, 7 figures, 4 tables, accepted for publication in MNRA

    The HARPS search for southern extra-solar planets XLV. Two Neptune mass planets orbiting HD 13808: a study of stellar activity modelling's impact on planet detection

    Get PDF
    We present a comprehensive analysis of 10 years of HARPS radial velocities of the K2V dwarf star HD 13808, which has previously been reported to host two unconfirmed planet candidates. We use the state-of-the-art nested sampling algorithm PolyChord to compare a wide variety of stellar activity models, including simple models exploiting linear correlations between RVs and stellar activity indicators, harmonic models for the activity signals, and a more sophisticated Gaussian process regression model. We show that the use of overly-simplistic stellar activity models that are not well-motivated physically can lead to spurious `detections' of planetary signals that are almost certainly not real. We also reveal some difficulties inherent in parameter and model inference in cases where multiple planetary signals may be present. Our study thus underlines the importance both of exploring a variety of competing models and of understanding the limitations and precision settings of one's sampling algorithm. We also show that at least in the case of HD 13808, we always arrive at consistent conclusions about two particular signals present in the RV, regardless of the stellar activity model we adopt; these two signals correspond to the previously-reported though unconfirmed planet candidate signals. Given the robustness and precision with which we can characterize these two signals, we deem them secure planet detections. In particular, we find two planets orbiting HD 13808 at distances of 0.11, 0.26 AU with periods of 14.2, 53.8 d, and minimum masses of 11, 10 Earth masses

    Исследование элементного состава проб твердой фазы снега в окрестностях цементного завода (Кемеровская область)

    Get PDF
    The objectives and methodology of the EU-funded research project HYVOLUTION devoted to hydrogen production from biomass are reviewed. The main scientific objective of this project is the development of a novel two-stage bioprocess employing thermophilic and phototrophic bacteria, for the cost-effective production of pure hydrogen from multiple biomass feedstocks in small-scale, cost-effective industries. Results are summarised of the work on pretreatment technologies for optimal biodegradation of energy crops and bio-residues, conditions for maximum efficiency in conversion of fermentable biomass to hydrogen and CO2, concepts of dedicated installations for optimal gas cleaning and gas quality protocols, as well as innovative system integration aimed at minimizing energy demand and maximizing product output. The main technological objective is the construction of prototype modules of the plant which, when assembled, form the basis of a blueprint for the whole chain for converting biomass to pure hydrogen. A brief outline is presented of the progress made towards developing reactors for thermophilic hydrogen production, reactors for photoheterotrophic hydrogen production and equipment for optimal gas cleaning procedures

    ACCESS, LRG-BEASTS, & MOPSS: Featureless Optical Transmission Spectra of WASP-25b and WASP-124b

    Full text link
    We present new optical transmission spectra for two hot Jupiters: WASP-25b (M = 0.56~MJ_J; R = 1.23 RJ_J; P =~3.76 days) and WASP-124b (M = 0.58~MJ_J; R = 1.34 RJ_J; P = 3.37 days), with wavelength coverages of 4200 - 9100\AA\ and 4570 - 9940\AA, respectively. These spectra are from the ESO Faint Object Spectrograph and Camera (v.2) mounted on the New Technology Telescope (NTT) and Inamori-Magellan Areal Camera & Spectrograph on Magellan Baade. No strong spectral features were found in either spectra, with the data probing 4 and 6 scale heights, respectively. \texttt{Exoretrievals} and \texttt{PLATON} retrievals favor stellar activity for WASP-25b, while the data for WASP-124b did not favor one model over another. For both planets the retrievals found a wide range in the depths where the atmosphere could be optically thick (0.4μ\sim0.4\mu - 0.2 bars for WASP-25b and 1.6 μ\mu -- 32 bars for WASP-124b) and recovered a temperature that is consistent with the planets' equilibrium temperatures, but with wide uncertainties (up to ±\pm430^\circK). For WASP-25b, the models also favor stellar spots that are \sim500-3000^\circK cooler than the surrounding photosphere. The fairly weak constraints on parameters are owing to the relatively low precision of the data, with an average precision of 840 and 1240 ppm per bin for WASP-25b and WASP-124b, respectively. However, some contribution might still be due to an inherent absence of absorption or scattering in the planets' upper atmospheres, possibly because of aerosols. We attempt to fit the strength of the sodium signals to the aerosol-metallicity trend proposed by McGruder et al. 2023, and find WASP-25b and WASP-124b are consistent with the prediction, though their uncertainties are too large to confidently confirm the trend.Comment: Accepted in AJ July 202

    Early Release Science of the exoplanet WASP-39b with JWST NIRSpec PRISM

    Full text link
    Transmission spectroscopy of exoplanets has revealed signatures of water vapor, aerosols, and alkali metals in a few dozen exoplanet atmospheres. However, these previous inferences with the Hubble and Spitzer Space Telescopes were hindered by the observations' relatively narrow wavelength range and spectral resolving power, which precluded the unambiguous identification of other chemical species-in particular the primary carbon-bearing molecules. Here we report a broad-wavelength 0.5-5.5 μ\mum atmospheric transmission spectrum of WASP-39 b, a 1200 K, roughly Saturn-mass, Jupiter-radius exoplanet, measured with JWST NIRSpec's PRISM mode as part of the JWST Transiting Exoplanet Community Early Release Science Team program. We robustly detect multiple chemical species at high significance, including Na (19σ\sigma), H2_2O (33σ\sigma), CO2_2 (28σ\sigma), and CO (7σ\sigma). The non-detection of CH4_4, combined with a strong CO2_2 feature, favours atmospheric models with a super-solar atmospheric metallicity. An unanticipated absorption feature at 4μ\mum is best explained by SO2_2 (2.7σ\sigma), which could be a tracer of atmospheric photochemistry. These observations demonstrate JWST's sensitivity to a rich diversity of exoplanet compositions and chemical processes.Comment: 41 pages, 4 main figures, 10 extended data figures, 4 tables. Under review in Natur

    Identification of carbon dioxide in an exoplanet atmosphere

    Get PDF
    Carbon dioxide (CO2) is a key chemical species that is found in a wide range of planetary atmospheres. In the context of exoplanets, CO2 is an indicator of the metal enrichment (that is, elements heavier than helium, also called 'metallicity')1-3, and thus the formation processes of the primary atmospheres of hot gas giants4-6. It is also one of the most promising species to detect in the secondary atmospheres of terrestrial exoplanets7-9. Previous photometric measurements of transiting planets with the Spitzer Space Telescope have given hints of the presence of CO2, but have not yielded definitive detections owing to the lack of unambiguous spectroscopic identification10-12. Here we present the detection of CO2 in the atmosphere of the gas giant exoplanet WASP-39b from transmission spectroscopy observations obtained with JWST as part of the Early Release Science programme13,14. The data used in this study span 3.0-5.5 micrometres in wavelength and show a prominent CO2 absorption feature at 4.3 micrometres (26-sigma significance). The overall spectrum is well matched by one-dimensional, ten-times solar metallicity models that assume radiative-convective-thermochemical equilibrium and have moderate cloud opacity. These models predict that the atmosphere should have water, carbon monoxide and hydrogen sulfide in addition to CO2, but little methane. Furthermore, we also tentatively detect a small absorption feature near 4.0 micrometres that is not reproduced by these models
    corecore