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ABSTRACT
We present a comprehensive analysis of 10 yr of HARPS radial velocities (RVs) of the K2V dwarf star HD 13808, which has
previously been reported to host two unconfirmed planet candidates. We use the state-of-the-art nested sampling algorithm
POLYCHORD to compare a wide variety of stellar activity models, including simple models exploiting linear correlations between
RVs and stellar activity indicators, harmonic models for the activity signals, and a more sophisticated Gaussian process regression
model. We show that the use of overly simplistic stellar activity models that are not well-motivated physically can lead to spurious
‘detections’ of planetary signals that are almost certainly not real. We also reveal some difficulties inherent in parameter and
model inference in cases where multiple planetary signals may be present. Our study thus underlines the importance both of
exploring a variety of competing models and of understanding the limitations and precision settings of one’s sampling algorithm.
We also show that at least in the case of HD 13808, we always arrive at consistent conclusions about two particular signals
present in the RV, regardless of the stellar activity model we adopt; these two signals correspond to the previously reported
though unconfirmed planet candidate signals. Given the robustness and precision with which we can characterize these two
signals, we deem them secure planet detections. In particular, we find two planets orbiting HD 13808 at distances of 0.11, 0.26 au
with periods of 14.2, 53.8 d, and minimum masses of 11, 10 M⊕.

Key words: methods: data analysis – methods: statistical – techniques: radial velocities – stars: activity – stars: individual:
HD 13808.

1 IN T RO D U C T I O N

The radial velocity (RV) method has been an important and produc-
tive tool for discovering exoplanets ever since it led to the discovery
of the first exoplanet orbiting a Sun-like star (Mayor & Queloz
1995). However, the search for small Earth- and Neptune-like planets
orbiting Sun-like stars is very challenging. They give rise to relatively
small RV signatures of order 1 m s−1 or less, whilst stellar magnetic
activity can induce RV signals that can mimic planetary ones, with
amplitudes of order many meters per second (e.g. Queloz et al. 2001).

Thus, with the increasing precision of RV measurements facilitated
by upcoming extreme-precision Doppler spectrographs such as
ESPRESSO (Pepe et al. 2014), EXPRES (Jurgenson et al. 2016),
HARPS3 (Thompson et al. 2016), HIRES (Pasquini et al. 2008),
and NEID (Schwab et al. 2016), the characterization of the influence
from host stars’ activity on the RV measurements becomes ever
more important. Hence, there is a strong interest in developing tools
to disentangle stellar and planetary signals in RV data.

� E-mail: eva-maria.ahrer@warwick.ac.uk

A variety of methods exists that attempt to ‘correct’ or model
stellar activity signals in RVs, and thus reduce the possibility of
false-positive planet detections. Models describing this include pre-
whitening and red-noise models (e.g. Hatzes et al. 2010; Feroz &
Hobson 2013), as well as studying stellar activity indicators such
as the bisector inverse slope (BIS) and full width at half-maximum
(FWHM) of the cross-correlation function (CCF) between a target
star and a template spectrum, or measurements of chromospheric
activity in the target star, such as the log R′

HK index (e.g. Boisse
et al. 2009; Queloz et al. 2009; Dumusque et al. 2011). The presence
of periodic signals in indicators usually suggest an activity-induced
signal rather than a planetary one, since a genuine planet would
induce a periodic Doppler shift in all spectral lines, but would not
produce the same periodic variations in the stellar activity indicators.
It is straightforward to use linear correlations (e.g. Queloz et al. 2001)
and to include harmonic models which use the rotational period of
the star and its harmonics (e.g. Dumusque et al. 2012) to describe
stellar activity induced RV variations.

Other, more computationally expensive methods include mod-
elling the stellar surface features directly (e.g. Boisse, Bonfils &
Santos 2012) and predicting activity-related RV variability with stel-
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lar activity indicators using the FF
′
method and Gaussian processes

(GPs) as described in e.g. Aigrain, Pont & Zucker (2012) and Rajpaul
et al. (2015); such approaches have already successfully been used to
identify false-positive planetary detections as e.g. in Haywood et al.
(2014b) or Rajpaul, Aigrain & Roberts (2016).

To quantify the quality of different models for describing observed
RV data, Bayesian model comparison has proven to be a robust
approach (e.g. Feroz & Hobson 2013; Faria et al. 2016; Hall et al.
2018), also in combination with GP modelling (Faria et al. 2020).
However, a significant challenge inherent in this method is very
high computing costs when dealing with high-dimensional problems,
since computing Bayesian model evidences entails integrating over
all model parameter posteriors; a related challenge is degeneracy
inherent in combinations of Keplerian and stellar activity models
(see Nelson et al. 2020). Nevertheless, it is widely accepted that
Bayesian model comparison is a theoretically sound approach to
answering questions about competing physical models,1 and that
such computational burdens are therefore a price worth paying
(Goodman 1999).

This paper presents a comprehensive analysis of a series of 246
spectroscopic measurements on HD 13808 carried out with HARPS
from 2003 to 2014. This star belongs to a sample of bright stars
selected for their low level of RV ‘jitter’ to maximize the sensitivity
of the survey to low-mass exoplanets. Series of stellar spectrum of
HD 13808 with a signal-to-noise ratio (S/N) large enough to reach the
photon noise RV measurement error of order 50 cm s−1 are available.
In addition, the exposure time was at least 15 min to minimize the
effect of acoustic mode stellar oscillations (e.g. Dumusque et al.
2011; Chaplin et al. 2019). Early in the survey of HD 13808, small
amplitude RV variations were detected, suggesting a combination
of time variable signal due to a multiplanet systems and moderate
stellar activity. We present a comprehensive analysis of HARPS
RVs on that star using Bayesian inference to combine various stellar
activity models with a set of independent Keplerian orbit solutions.

With this paper, we aim to examine the importance of comparing
systematically a number of competing physical models, since the
usefulness of Bayesian model comparison is limited by the quality
of the models considered (favouring one inappropriate model over
another does not imply that either model is in any sense ‘correct’).
We show that if an inadequate stellar activity model is considered,
one may be led astray and end up with spurious conclusions about
the number of planets present in one’s system. Models we consider in
our analysis include linear correlations between RV data and stellar
activity indicators; sinusoidal models; and joint GP regression of
RV measurements and activity. Moreover, we present a thorough
test of the nested sampling algorithm POLYCHORD, a state-of-the-
art sampler, and discuss its limitations and the importance of the
precision settings in exoplanet applications. The HD 13808 system
is used as a test case for this study as (i) the host star shows stellar
activity variability, and (ii) it has been suggested in the literature that
the system hosts at least two-planet candidates, though the existence
of these planets was never securely confirmed (see Mayor et al.
2011; Gillon et al. 2017; at the time of writing this paper, the NASA
Exoplanet Archive2 lists HD 13808 as having no confirmed planets).
With the analysis in this paper, the status of these candidates elevates
to confirmed planets.

1The same cannot be said for various other commonly used approaches
to model selection, such as residual minimization, Bayesian information
criterion testing, etc. (Gelman et al. 2013).
2Available online at exoplanetarchive.ipac.caltech.edu.

Table 1. Description of the HARPS RV data of HD 13808.

HD13808

Number of observations 246
Time span (d) 4051
mean (RV) (m s−1) 41 095
rms (RV) (m s−1) 3.94
mean (σRV) (m s−1) 0.76
median (log R′

HK) − 4.90

This paper is structured as follows. We describe the HARPS
observations in Section 2, followed by the modelling of Keplerian
orbits in Section 3. We introduce the stellar activity models applied in
this work in Section 4 and outline model comparison using Bayesian
inference and POLYCHORD in Section 5. Afterwards, we present the
results of our analysis of HD 13808 RVs in Section 6 and conclude
with our discussion in Section 7.

2 H A R P S O B S E RVAT I O N S O F H D 1 3 8 0 8

Spectra of HD 13808 were measured with HARPS, a fibre-fed
spectrograph installed in a vacuum vessel, mounted on the 3.6m
ESO telescope of La Silla in Chile (Mayor et al. 2003). Observations
were made using the most precise observing mode that utilizes
a simultaneous calibration by the ThAr calibration lamp. In this
configuration, HARPS achieves a long-term RV precision better than
1 m s−1, allowing us to detect small stellar RV variations of this order
(Lovis et al. 2008).

The data obtained by HARPS are automatically processed on site
by a data reduction software – the HARPS DRS – that extracts the
spectra, calibrates it and eventually computes a CCF with a stellar
template. The stellar RV is measured from the CCF as well as other
parameters like the FWHM or the BIS (Queloz et al. 2001; Santos
et al. 2002). In addition for each HARPS spectra, the value of the
Calcium S activity index is estimated from the chromospheric re-
emission in the Ca II H and K lines and converted in standard log R′

HK

index.
Since the release of the first version of the HARPS DRS in 2003,

a series of successive versions with improved algorithms have been
developed, leading to a steady gain in the RV precision. Details about
the historical changes in the HARPS DRS algorithms may be found
in following series of papers: Baranne et al. (1996), Pepe et al. (2002),
Lovis & Pepe (2007), and Mayor et al. (2009a, b).

Measurements used in this paper were reprocessed with version
3.5 of the HARPS DRS.3

A description of the HARPS data used in this study is given in
Table 1, while HD 13808’s stellar parameters are summarized in
Table 2. HD 13808 has been observed by HARPS 246 times over a
span of more than 10 yr, achieving consistent quality of mean(σ RV)
= 0.76 m s−1.

3 MODELLI NG R ADI AL VELOCI TI ES

To model the observed RV of a star at time ti with Np planets,
we sum the planets’ individual Keplerian terms, neglecting planet–
planet interactions; following Feroz, Balan & Hobson (2011) and the

3All data used in the analysis will be available via VizieR at CDS (Ochsenbein,
Bauer & Marcout 2000).
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Table 2. HD 13808: stellar properties, with corresponding references (1)
Gray et al. (2006); (2) Kharchenko (2001); (3) Skrutskie et al. (2006); (4)
Santos et al. (2013); (5) Delgado Mena et al. (2019); (6) GAIA DR2 Bailer-
Jones et al. (2018).

HD13808 Reference

Spectral type K2V (1)
V (mag) 8.38 ± 0.01 (2)
K (mag) 6.25 ± 0.02 (3)
Teff (K) 5035 ± 50 (4)
Fe/H (dex) − 0.21 ± 0.02 (4)
M (M�) 0.771 ± 0.022 (5)
Age (Gyr) 7.2 ± 4.8 (5)
RS (R�) 0.781+0.017

−0.022 (6)
d (pc) 28.2535 ± 0.0256 (6)

Table 3. Priors for the Keplerian, RV trend and additive white noise (‘jitter’)
parameters used in all of our models and analyses.

Parameter Prior Lower bound Upper bound

P (d)a Log uniform 5 100
K (m s−1) Log uniform 0.1 10√

e sin(ω)b Uniform −1 1√
e cos(ω)b Uniform −1 1

λ (rad) Uniform 0 2π
V (m s−1)c Uniform −RVmax RVmax

σ+
RV (m s−1) Uniform 0 20

Notes. aWe also require for the periods to be sorted, i.e. Pb < Pc etc.
bWe also require that the corresponding eccentricity e < 1.
cThis prior applies to all polynomial terms.

formalism given in Balan & Lahav (2009), we arrive at

RV(ti) = Vi +
Np∑
p=1

Kp

[
cos(fi,p + ωp) + ep cos(ωp)

]
, (1)

where Vi is the systemic velocity, Kp is the RV semi-amplitude,
fi, p, is the true anomaly, ep is the orbital eccentricity, and ωp is the
argument of periastron of the pth planet, respectively. In addition, the
introduction of the mean longitude λp of the pth planet is necessary
as part of the computation of fi, p that requires ep and the period of
the planet Pp as well.

A planet’s semi-amplitude Kp is related to its mass Mp, period and
orbital eccentricity ep, as well as to the mass of the parent star MS

and the inclination of the system i relative to the observer:

Kp = 28.4329 m s−1√
1 − e2

p

(
Pp

1 yr

)−1/3
Mp sin(i)

MJup

(
MS

M�

)−2/3

. (2)

In summary, we have five free parameters per planet (K, ω, e, P,
and λ) plus a white-noise ‘jitter’ term σ+

RV which is added to the
observational error in quadrature (see Section 5.2) and any terms
for describing the systemic velocity, V – typically a constant offset
plus a linear or possibly quadratic polynomial term. For the analysis
in this paper, a quadratic polynomial term was used for all models.
Additionally, our models for describing stellar activity contributions
to RVs contain anything from 1 to 16 free parameters; these models
are described in detail in Section 4.

The uninformative priors for our five free parameters per planet
are listed in Table 3, as well as the priors for the polynomial terms
and for the additive white-noise term. Note that the lower and upper
boundary for planet periods was set to 5 and 100 d for computational
efficiency. This choice was supported, in the first instance, by the

Table 4. Priors for the parameters of the various stellar activity models
described in Section 4.

Parameter Prior Lower bound Upper bound

α Uniform −RVmax +RVmax

Prot Uniform 30 d 42 d
Pmagn Uniform 500 d 4500 d
φ Uniform 0 2π
CBIS Uniform −BISmax +BISmax

Cmagn Uniform −log R′
HK,max +log R′

HK,max
β Uniform −RVmax +RVmax

	0 Uniform FWHMmax FWHMmax + 15σ b

δVcκ Uniform 0 10 000
Ra Uniform RS − 5σ Sa RS + 5σ Sa

Vc Uniform −rms(RV) +rms(RV)
Vr Uniform −rms(RV) +rms(RV)
Lc Uniform −rms(log R′

HK) +rms(log R′
HK)

Bc Uniform −rms(BIS) +rms(BIS)
Br Uniform −rms(BIS) +rms(BIS)
PGP Uniform 10 d 100 d
λp Jeffreys 0.01 10
λe Jeffreys 10 d 400 d

Notes. aRS is the radius of the star and σ S is the estimated error.
bσ is the observed standard deviation of the FWHM.

fact that the Lomb–Scargle power spectrum of RVs revealed no
significant periodicities above about 60 d (see Fig. 3). Moreover,
models allowing planets with periods longer than 100 d or shorter
than 5 d always had lower Bayesian evidences than models without
such planets (when using a GP stellar activity model – cf. Section 6),
and the inferred RV semi-amplitudes of these short- or long-period
planets was always consistent with zero.4

The priors used for stellar activity model parameters were gener-
ally also chosen to be uninformative, and are discussed in Section 4
and summarized in Table 4.

4 MODELLI NG STELLAR ACTI VI TY

In this section, we introduce the multiple ways of modelling stellar
activity applied in this work. Simple models like linear dependencies
are considered, as well as harmonic modelling of the rotation
period of the star, combining BIS and RV measurements in a
simultaneous fit. We also discuss more sophisticated approaches to
modelling activity-induced RV variations, namely the FF

′
approach

and simultaneous GP regression over multiple activity indicators.

4.1 Linear activity model

A linear relation between RVs and BIS was considered as seen in
equation (3), where RVKepler(t) are the RV signatures of the planets at
time t as described previously in equation (1); BIS(t) represents the
BIS measurements taken at time t and α describes the free parameter
for the linear relation. A quadratic polynomial term including a
constant offset is represented by V.

RVtotal(t) = RVKepler(t) + αBIS(t) + V . (3)

This method has already been successful in identifying false
positives (e.g. Queloz et al. 2001). However, note that it has been

4However, the computational cost of evaluating models with expanded planet-
period priors was typically an order of magnitude greater than when using the
more restricted prior, and posterior multimodality was far more pronounced.
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shown that there can be a temporal offset between activity and
associated RV variations on time-scales of few days causing a ‘blur’
of any linear correlation between those two parameters, making a
linear model a choice with a major caveat (e.g. Santos et al. 2014;
Collier Cameron et al. 2019). The prior distribution for α is shown
with the other parameters related to stellar activity modelling in
Table 4.

In a similar way, a linear dependence on the log R′
HK activity

indicator was considered as we hoped to capture any possible linear
long-term relationship with

RVtotal(t) = RVKepler(t)+β log R′
HK(t) + V , (4)

where β represents the linear factor and log R′
HK(t) the

log R′
HKmeasurements at time t. The prior distribution for β can

be found in Table 4.

4.2 Harmonic activity model

Our second activity model entailed fitting a sinusoid to both the
RVs and BIS time series, enforcing an identical period but allowing
different phases and amplitudes between the two. We assume that
this captures solar spots and other stellar features which are sensitive
to the rotation of the star. In addition, it accounts for a likely time
shift which is a problem when considering linear correlations as
mentioned in Section 4.1.

Equations (5) and (6) show the two models with the harmonics
of the rotation period simultaneously fit to the RV and BIS mea-
surements, respectively. The parameter Prot is the putative rotation
period of the star fit to both models, while the other parameters Ki,
φRV, Kk, φBIS, and CBIS describe the sinusoidal signal of the ith and
kth harmonic for the RV(t) and BIS(t) model, respectively, with Nh

being the number of harmonics. As before, the parameter V represents
a quadratic polynomial contribution:

RVtotal(t) = RVKepler(t) +
Nh∑
i=1

Ki sin

(
2πit

Prot
+ φRV

)
+ V , (5)

BIS(t) =
Nh∑
k=1

Kk sin

(
2πkt

Prot
+ φBIS

)
+ CBIS. (6)

The prior distribution for K is as in Table 3; the priors for φ,
CBIS and Prot are displayed in Table 4. Note that the prior on the
rotation period Prot was chosen to cover a narrow range based on the
following: (i) the rotation period for HD 13808 was estimated before
to be ∼40 d based on the average of log R′

HK measurements by Lovis
et al. (2011); (ii) signals likely corresponding to the harmonics of the
rotation period are detected in the periodograms of the stellar activity
indicators (see Section 6.1; Fig. 3). Further motivation was provided
by the fact that (iii) when considering zero or one-planet models,
the rotation period of the star became locked on to the period of one
of the two planets, and that (iv) during preliminary runs, the MAP
value for the rotation period never went above 40 d. By limiting the
period to below 42 d, we reduced the computational burden of our
modelling.

4.3 Long-term magnetic activity model

In a similar fashion to the harmonic activity model, the ‘magn. cycle’
model fits a sinusoid to two data sets, this time to the RVs and
the log R′

HK time series, enforcing an identical period but allowing
different phases and amplitudes. We assume that this captures stellar
activity corresponding to a long-term magnetic activity cycle.

Equations (7) and (8) show the two models with the cycle period
Pmagn simultaneously fit to the RV and log R′

HK measurements,
respectively. The parameters Kmagn,RV, φmagn,RV and Kmagn, φmagn,
Cmagn describe the RV(t) and log R′

HK(t) model, respectively; V
represents a constant offset and a quadratic polynomial term.

RVtotal(t) = RVKepler(t) + Kmagn,RV sin

(
2πt

Pmagn
+ φmagn,RV

)
+ V

(7)

log R′
HK(t) = Kmagn sin

(
2πt

Pmagn
+ φmagn

)
+ Cmagn. (8)

The prior distribution for K is as in Table 3; the priors for φ, Cmagn

and Pmagn are displayed in Table 4. The upper and lower prior limits
for Pmagn were determined by a broad peak around 1000–4000 d in
the periodogram of log R′

HK as well as by the obvious periodic signal
in the log R′

HK measurements (see Fig. 2).

4.4 FF
′

method

The FWHM measurements were used for applying the FF
′

method
that was introduced by Aigrain et al. (2012), as a method for relating
the photometric brightness and RV variations of a star. It uses the
flux of the star 	(t) and its derivative 	̇(t) as an indicator for
spot coverage and predicts RV variations. These variations include
the RV perturbation �RVrot(t) due to the presence of spots on the
rotating photosphere and their effect of the suppression of convective
blueshift �RVconv(t).

Aigrain et al. (2012) describes these with the following two
equations, where f represents the drop in flux produced by a spot at the
centre of the stellar disc, R∗ is the stellar radius, δVc is the difference
between the convective blueshift in the unspotted photosphere and
that within the magnetized area and κ is the ratio of this area to the
spot surface:

�RVrot(t) = − 	̇(t)

	0

[
1 − 	(t)

	0

]
R∗
f

, (9)

�RVconv(t) =
[

1 − 	(t)

	0

]2
δVcκ

f
. (10)

The total RV variation �RVactivity created by stellar activity is then
the sum of both terms:

�RVactivity = �RVrot(t) + �RVconv(t). (11)

The parameter f is approximated as

f ≈ 	0 − 
min

	0
, (12)

with 
min being the minimum observed flux.
It has been argued that CCF FWHM and log R′

HK measurements
should both behave, to first order, as the convective blueshift
suppression term in the FF

′
method, which in turn is a close proxy for

the integrated active region coverage on the visible stellar hemisphere
(Rajpaul et al. 2015); indeed, it has been shown in practice that
the CCF FWHM can be a good tracer of photometric flux (e.g.
Suárez Mascareño et al. 2020). Thus, as we did not have photometric
measurements of HD 13808 available, we chose to interpret the
FWHM as a proxy for the flux 	(t). The derivative of the ‘flux’
was computed numerically by modelling the FWHM with a GP
using the CELERITE algorithm by Foreman-Mackey et al. (2017). In
total, there were three free parameters in this stellar activity model,
δVcκ , R∗ and 	0 – their respective priors appear in Table 4.
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Table 5. Jeffreys’ scale, as introduced by Jeffreys (1983), for interpreting
differences in Bayesian evidences. This scale interprets the strength of
evidence favouring one model over another.

|ln R| Odds Probability Remark

<1.0 �3:1 <0.750 Inconclusive
1.0 ∼3:1 0.750 Weak evidence
2.5 ∼12:1 0.923 Moderate evidence
5.0 ∼150:1 0.993 Strong evidence

4.5 GP regression model

We used the GP framework developed by Rajpaul et al. (2015,
hereafter R15) to model RVs simultaneously with log R′

HK and BIS
observations. In short, this framework assumes that all observed
stellar activity signals are generated by some underlying latent
function G(t) and its derivatives; this function, which is not observed
directly, is modelled with a Gaussian process (Rasmussen & Williams
2006; Roberts et al. 2013).

Following R15, activity variability in the RV, log R′
HK and BIS

time series can be modelled as

�RV = VcG(t) + VrĠ(t), (13)

log R′
HK = LcG(t), and (14)

BIS = BcG(t) + BrĠ(t), (15)

respectively. The coefficients Vc, Vr, Lc, Bc, and Br are free parameters
relating the individual observations to the unobserved Gaussian pro-
cess G(t). In R15’s framework, G(t) itself can be loosely interpreted
as representing the projected area of the visible stellar disc covered
in active regions at a given time; the GP describing G(t) is assumed
to have zero mean and covariance matrix K, where Kij = γ (ti, tj).
As in R15, we adopt the following quasi-periodic covariance kernel
function:

γ (ti , tj ) = exp

[
− sin2

[
π(ti − tj )/PGP

]
2λ2

p

− (ti − tj )2

2λ2
e

]
, (16)

where PGP is the period of the quasi-periodic activity signal, λp is
the inverse harmonic complexity of the signal (such that signals
become sinusoidal for large values of λp, and show increasing
complexity/harmonic content for small values of λp), and λe is the
time-scale over which activity signals evolve. This quasi-periodic
covariance kernel has been widely used to model stellar activity
signals in both photometry and RVs (e.g. Haywood et al. 2014a;
Grunblatt, Howard & Haywood 2015; Rajpaul et al. 2015; Bonfils
et al. 2018). The full expressions for the covariance between the three
different observables models are given in R15.

We expect, in principle at least, that this sophisticated GP-based
approach to modelling RVs jointly with activity indicators should en-
able more reliable planet characterization for several reasons. First,
by modelling multiple activity-sensitive time series simultaneously
(e.g. log R′

HK, BIS, FWHM, etc., or some subset of these), more
information can be gleaned on activity signals in RVs, compared to
exploiting only simple correlations between RVs and (typically) one
of these time series. Additionally, the framework uses GP draws and
derivatives thereof as basic functions for modelling available time
series, rather than e.g. sinusoids or other simple parametric models,
the inappropriate use of which could easily lead to the introduction
of correlated signals into model residuals. The GP basis functions
could in principle take any form, although in the GP framework
their properties are constrained to some extent by the data itself, and

from reasonable prior assumptions about the quasi-periodic nature
of stellar activity signals. The GP framework also incorporates the
FF

′
formalism directly as a special case; the former approach may

be thought of as a generalization of the latter.

5 BAY ESI AN INFERENCE AND PO LYCH O R D

5.1 Bayesian model comparison

As we shall use Bayesian inference to evaluate the relative posterior
probabilities of different models, we summarize briefly here the
relevant formalism. First, Bayes’ Theorem, given in equation (17),
is used to relate (i) the posterior probability Pr(�|D,M) = P (�)
of the parameters � given data D and a model M to (ii) the prior
distribution Pr(�|M) = π (�) of � given M, (iii) the likelihood
Pr(D|�, M) = L(�) of D given � and M and the Bayesian evidence
Pr(D|M) = Z of D given M. Following the notation used by Feroz,
Hobson & Bridges (2009):

Pr(�|D, M) = Pr(D|�,M) Pr(�|M)

Pr(D|M)
, (17)

or simply

P (�) = L(�) π(�)

Z
. (18)

For model selection, one can compare two models M1 and M2,
given data D, by computing the ratio of their respective posterior
probabilities; this ratio is also known as the Bayes factor R:

R = Pr(M1|D)

Pr(M2|D)
= Pr(D|M1) Pr(M1)

Pr(D|M2) Pr(M2)
= Z1

Z2

Pr(M1)

Pr(M2)
. (19)

Note that Pr(M1)
Pr(M2) is the relative a priori probability between the two

models, which is usually set to one.
To decide whether the evidence difference is significant to favour

one model over the other, we make use of the Jeffreys scale as given
in Table 5, where the logarithmic scale of the evidence difference is
used. This simplifies equation (19) to

ln(R) = ln

(
Z1

Z2

)
= ln Z1 − ln Z2. (20)

5.2 Likelihood function

It is commonly assumed that an additive white Gaussian noise
(AWGN) model is sufficient for describing observational noise, as
in probability theory the central limit theorem states that the sum of
independent random variables tends towards a Gaussian distribution,
even if the original ones are not normally distributed (Fischer 2011).
In this case, the likelihood L(�) of parameters � can be written as

L(�) =
N∏

i=1

1√
2πσ 2

i

exp

(
− [v(ti ; �) − vi]2

2σ 2
i

)
, (21)

where v(ti; �) describes the model’s predicted RV for parameters
�, while vi describes the RV observed at time ti, with corresponding
error estimate σ i which contains the observational error and the
additive noise ‘jitter’ term σ+

RV added in quadrature. The logarithmic
likelihood, which is more convenient to work with, is computed as

ln L(�) =
N∑

i=1

− ln
√

2πσ 2
i − 1

2σ 2
i

[v(ti ; �) − vi]
2. (22)

Note that the above formalism applies to all of our models except
for the GP model, which explicitly generalises the AWGN model by
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Two Neptune mass planets orbiting HD 13808 1253

Figure 1. A typical run with POLYCHORD. The bottom graph shows the
logarithmic likelihood over the course of the run, with log X corresponding
to the prior volume i.e. at the start of the run log X is at its highest value. Two
phase transitions are clearly visible as ‘knees’ in the logL–logX curve. On
the top, the live-point distributions of two parameters (Kb and

√
eb cos(ωb))

within a given likelihood contour (indicated by the red vertical lines) are
shown, demonstrating the transitions between different phases. Note that if
the precision criterion is not set low enough, one runs the risk of stopping
nested sampling at too early a log X value (i.e. at one of the lower knees), and
this is indeed what we observed in preliminary tests.

Figure 2. Measurement of the log R′
HK activity index on the series of spectra

of HD 13808. The black dashed line represents the median value of −4.90
which was used as the condition for separating the data set into two parts.

Table 6. An overview of the HARPS RV data subsets of HD 13808 referred
to as low and high activity when log R′

HKis <−4.90 and >−4.90, respectively.

Low Activity High Activity

log R′
HK <−4.90 >−4.90

N data 123 123
�T (d) 3332 3701
rms (RV) (m s−1) 3.53 3.78
mean (σRV) (m s−1) 0.72 0.78
mean (log R′

HK) −4.95 −4.83

allowing for red (correlated) noise. In this case, the log likelihood
may be computed via the more general expression

ln L(�) = −N
2 ln 2π − 1

2 ln det K − 1
2 rT K−1r, (23)

where K is the matrix defining the covariance between all pairs of
observations (see R15), and r is a vector of residuals with the ith
element given by v(ti; �) − vi. Note that in the special case where K
is a diagonal matrix with the ith element given by σ 2

i , i.e. where the
noise is assumed to be white, equation (23) reduces to equation (22).

As the Keplerian model requires the Kepler equation to be solved,
we made use of the efficient CORDIC-like method introduced by
Zechmeister (2018) where double precision is obtained within 55
iterations.

5.2.1 Avoiding unstable Keplerian orbits

While computing likelihoods we checked if each pair of planets
would be stable following the criterion introduced by Gladman
(1993): � > 2

√
3 RH (i, j ) where � = aj − ai is the difference

between the semimajor axis of the ith and jth planet and RH(i, j)
the planets’ mutual Hill radius. This has been used before e.g. by
Malavolta et al. (2017).

If the parameters drawn resulted in a planet system which was
considered unstable, the likelihood was set to zero, i.e. Z0 = 0; in
our case, as we worked with log likelihoods, this was approximated
numerically by ln Z0 = −1 × 1030.

5.3 POLYCHORD

We used POLYCHORD as it is an state-of-the-art nested sampling
algorithm, designed to work with very high dimensional parameter
spaces (Handley, Hobson & Lasenby 2015). A short discussion
comparing it with MULTINEST (Feroz et al. 2009) can be found
in Hall et al. (2018). It was developed using C++ and FORTRAN and
can also be called as a PYTHON package.

In order to test the reliability of our algorithm with POLYCHORD,
we used two sets of simulated data. One data set contained random
uncorrelated Gaussian noise (with a standard deviation of 1 m s−1)
without any planetary signals, while the other one consisted of two
planets on elliptical orbits with the same Gaussian noise. Both
data sets also included an offset of a few m s−1 and linear trend
of 10−5 m s−1 per day. Models of 0–3 planet signals with long-
term trends in the form of second-order polynomials were fitted
and their evidences compared. Both elliptical and circular orbital
solutions were computed. We note here that in general the evidence
uncertainty reported by POLYCHORD is an underestimate, and it is
better practice to estimate it via the range of scatter in the evidence
across multiple runs (Higson et al. 2018; Nelson et al. 2020); we used
the latter approach throughout our analyses. (It is probable that this
behaviour would also be ameliorated by increasing the number of live
points beyond the computational resources available at the time of
writing.)

For the first data set without planetary signals, the algorithm
successfully favoured the no-planet model consisting of a second-
order polynomial. Every other model computed showed lower
evidences, with at least ln R ≈ 2 for the zero-planet model versus
one sinusoidal signal or ln R ≈ 3 for the zero-planet model versus
one elliptic orbital signal; evidences decreased with the number of
signals fitted.

Similarly, the two planets with eccentric orbits in the second test
were also recovered: the preferred model featured two planets, with
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1254 E. Ahrer et al.

Figure 3. BGLS periodograms of, from top to bottom, the RV, BIS, FWHM, and log R′
HKmeasurements and of a constant function (CF); that is, a data set

with the same timestamps and RV errors but assuming constant RV. The colours red and black indicate the high-activity and low-activity phases. The dark grey
shaded box represents the range of the putative rotation period with its second (grey) and third harmonic (light grey).

Table 7. HD 13808: Overview of the models used for the study of the HD 13808.

Model name Description

Circular Circular orbit modelling
Kepler Eccentric orbit modelling

+ magn. cycle Kepler + long-term magnetic activity cycle; Section 4.3
+ linear BIS Kepler + linear dependency on the BIS; Section 4.1, equation (3)
+ BIS Prot 1st harm. Kepler + simultaneous fit of 1st harmonic of Prot to the BIS and RVs; Section 4.2
+ BIS Prot 2nd harm. Kepler + simultaneous fit of 1st and 2nd harmonic of Prot to the BIS and RVs; Section 4.2
+ BIS Prot 3rd harm. Kepler + simultaneous fit of 1st, 2nd, and 3rd harmonic of Prot to the BIS and RVs; Section 4.2
+ linear log R′

HK Kepler + linear dependency on the log R′
HK; Section 4.1, equation (4)

+ FF
′

Kepler + FF’ method with FWHM as a proxy for flux; Section 4.4
Gaussian process Simultaneous GP modelling of RVs and activity indicators; Keplerian terms for RVs; Section 4.5
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Two Neptune mass planets orbiting HD 13808 1255

Table 8. HD 13808: Relative Bayesian evidences for different number of planets for each model and their scatter – as well as the residual RV
(O−C) rms and median absolute deviation (MAD) – for the two-planet model (or 1-planet model, if favoured) computed using the respective
MAP values (see Table 10). The model with two planetary signals for each model type was set to be zero. The errors correspond to the
standard error on the mean evidence across multiple runs or to the highest individual run error provided by POLYCHORD, whichever of the two
is greater.

Model No planets 1 planet 2 planets 3 planets 4 planets RV residual RV residual
ln(R) ln(R) ln(R) ln(R) ln(R) (rms m s−1) MAD m s−1

Circular − 65 ± 2 − 15 ± 2 0 ± 3 +2 ± 3 +6 ± 2 4.09 2.79
Kepler − 56 ± 3 − 6 ± 4 0 ± 4 +6 ± 4 +6 ± 4 3.23 2.31

+ magn. cycle − 78 ± 3 − 21 ± 3 0 ± 3 +10 ± 4 − 8 ± 13 3.89 2.41
+ linear BIS − 62 ± 2 − 12 ± 2 0 ± 3 − 2 ± 2 0 ± 2 2.97 2.11
+ BIS Prot 1st harm. − 51 ± 4 − 7 ± 4 0 ± 4 − 2 ± 8 − 10 ± 6 2.62 1.76
+ BIS Prot 2nd harm. − 52 ± 2 − 7 ± 3 0 ± 3 − 3 ± 6 − 6 ± 4 2.92 1.99
+ BIS Prot 3rd harm. − 71 ± 4 − 28 ± 4 0 ± 3 − 9 ± 4 − 15 ± 4 2.96 1.73

+ magn. cycle − 61 ± 6 − 7 ± 6 0 ± 6 − 7 ± 8 +2 ± 9 2.62 1.66
+ linear log R′

HK − 71 ± 3 − 16 ± 3 0 ± 3 − 6 ± 4 − 2 ± 4 2.18 1.51
+ FF

′ − 64 ± 1 − 14 ± 2 0 ± 1 − 3 ± 5 − 9 ± 6 2.47 1.53
Gaussian process − 73 ± 1 − 19 ± 2 0 ± 1 − 4 ± 3 − 23 ± 6 2.18 1.45

Circular low activity − 45 ± 3 − 10 ± 4 0 ± 4 − 4 ± 4 +9 ± 4 3.08 2.08
Kepler low activity − 37 ± 1 − 5 ± 1 0 ± 2 +14 ± 1 +7 ± 2 2.17 1.33

+ BIS Prot 3rd harm. − 38 ± 1 − 16 ± 2 0 ± 2 +1 ± 4 +3 ± 2 2.30 1.46
+ FF

′ − 38 ± 4 − 7 ± 4 0 ± 2 − 5 ± 4 +5 ± 7 4.15 3.08
Gaussian process low activity − 41 ± 1 − 7 ± 1 0 ± 2 − 2 ± 4 − 3 ± 1 1.75 1.09

Circular high activity − 15 ± 1 − 4 ± 1 0 ± 2 +3 ± 2 +3 ± 1 3.83 2.57
Kepler high activity − 14 ± 1 − 2 ± 1 0 ± 1 +4 ± 4 +4 ± 2 3.35 2.07

+ BIS Prot 3rd harm. − 7 ± 2 +2 ± 2 0 ± 2 +2 ± 3 +4 ± 2 3.61 2.32
+ FF

′ − 16 ± 4 − 2 ± 4 0 ± 2 − 1 ± 4 − 6 ± 7 3.75 2.42
Gaussian process high activity − 16 ± 1 − 4 ± 2 0 ± 3 − 1 ± 3 − 3 ± 2 2.47 1.57

Table 9. HD 13808: Periods for a putative third planet found in the various runs by the different models, their
corresponding semiamplitudes and the uncertainty (per Table 8) in the model evidences. Values in bold occur in at
least two of the runs.

Model Nruns σln Z Periods (d) Semi-amplitudes (m s−1)

Circular 5 3 11, 32, 63 ∼0.6, 0.7, 0.7
Kepler 3 4 8, 11, 19 ∼1.1, 0.7, 0.8

+ magn. cycle 3 4 12, 19 ∼0.6, 0.8
+ linear BIS 3 2 10, 12, 77 ∼0.5, 0.5, 0.9
+ BIS Prot 1st harm. 3 7 11, 34, 64 ∼0.7, 0.9, 0.7
+ BIS Prot 2nd harm. 3 6 10, 12, 34 ∼0.2, 0.2, 0.2
+ BIS Prot 3rd harm. 3 4 12, 26 ∼0.9, 0.9

+ magn. cycle 3 8 18, 63 ∼1.2, 1.7
+ linear log R′

HK 3 4 9, 23, 29 ∼0.7, 0.5, 0.5
+ FF

′
3 5 12, 29, 43 ∼1.1, 0.9, 0.5

Gaussian process 3 3 28, 80 ∼0.3, 0.5

Circular low activity 4 4 12, 22, 29, 74 ∼0.7, 0.5, 1.1, 0.6
Kepler low activity 3 1 10, 33, 49 ∼0.8, 0.7, 1.0

+ BIS Prot 3rd harm. 3 4 8, 17, 23 ∼0.2, 0.4, 0.1
+ FF

′
3 3 9, 21, 65 ∼1.0, 0.7, 0.9

Gaussian process low activity 3 4 9, 26, 34 ∼0.5, 0.5, 0.2

Circular high activity 3 2 11, 28, 76 ∼1.2, 1.0, 1.0
Kepler high activity 4 4 12, 19 ∼1.7, 1.6

+ BIS Prot 3rd harm. 3 3 9, 11, 34 ∼0.8, 1.3, 2.3
+ FF

′
3 4 10, 12 ∼1.6, 1.4

Gaussian process high activity 3 3 5, 19 ∼0.4, 2.0
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Table 10. HD 13808: Comparison of the orbital parameters semiamplitude K, period P, and eccentricity e for the two planets HD 13808b and HD 13808c for
each model. The parameters for the two-planet models of the run with the highest evidence from all runs are shown here. Note that not all models favour the
two-planet case.

Model Kb (m s−1) Kc (m s−1) Pb (d) Pc (d) eb ec

Circular 3.65+0.26
−0.23 1.95+0.24

−0.22 14.1801+0.0011
−0.0014 53.822+0.032

−0.025 – –

Kepler 3.62 ± 0.25 2.07 ± 0.28 14.17803+0.00098
−0.00067 53.794+0.054

−0.072 0.110+0.043
−0.054 0.24 ± 0.13

+ magn. cycle 3.60 ± 0.21 2.08 ± 0.23 14.1781+0.0013
−0.0016 53.801+0.050

−0.064 0.061+0.020
−0.056 0.175+0.066

−0.17

+ linear BIS 3.54 ± 0.25 2.00 ± 0.24 14.1737+0.0012
−0.00097 53.858 ± 0.059 0.086+0.036

−0.066 0.140+0.046
−0.13

+ BIS Prot 1st harm. 3.55 ± 0.25 1.96 ± 0.25 14.18329 ± 0.00070 53.745 ± 0.012 0.066 ± 0.017 0.212 ± 0.034
+ BIS Prot 2nd harm. 3.61 ± 0.25 2.14+0.25

−0.29 14.1780+0.0011
−0.00086 53.778+0.044

−0.039 0.086+0.036
−0.055 0.26+0.13

−0.15

+ BIS Prot 3rd harm. 3.61 ± 0.24 2.09 ± 0.25 14.1774+0.0013
−0.0011 53.804+0.033

−0.052 0.089+0.037
−0.065 0.21+0.10

−0.17

+ magn. cycle 3.56 ± 0.21 2.07 ± 0.20 14.1789+0.0014
−0.0012 53.803 ± 0.026 0.059+0.024

−0.052 0.102+0.041
−0.099

+ linear log R′
HK 3.57 ± 0.21 2.15 ± 0.23 14.1782+0.0011

−0.00065 53.777+0.020
−0.060 0.073+0.033

−0.048 0.20+0.10
−0.14

+ FF
′

3.57 ± 0.26 1.92+0.26
−0.34 14.1766 ± 0.0013 53.965+0.099

−0.20 0.095+0.046
−0.066 0.237+0.099

−0.20

Gaussian process 3.67 ± 0.22 2.18+0.22
−0.20 14.1815 ± 0.0015 53.753+0.050

−0.082 0.071+0.027
−0.047 0.156+0.050

−0.061

Circular low activity 3.71+0.26
−0.15 2.08 ± 0.22 14.1876+0.0049

−0.0089 53.71+0.15
−0.22 – –

Kepler low activity 3.46+0.42
−0.36 1.65+0.33

−0.22 14.191 ± 0.016 53.81+0.14
−0.26 0.075+0.025

−0.065 0.145+0.044
−0.14

+ BIS Prot 3rd harm. 3.68 ± 0.25 2.06 ± 0.24 14.2019 ± 0.0017 53.365+0.024
−0.019 0.069+0.027

−0.066 0.160+0.060
−0.13

+ FF
′

3.53 ± 0.29 1.88+0.33
−0.30 14.193+0.013

−0.012 53.78+0.20
−0.28 0.058+0.029

−0.057 0.122+0.037
−0.12

Gaussian process low activity 3.43+0.53
−0.59 1.78+0.40

−0.34 14.1870 ± 0.0050 53.89+0.27
−0.087 0.066+0.023

−0.037 0.098+0.025
−0.041

Circular high activity 2.81 ± 0.40 1.202+0.036
−0.058 14.18 ± 0.30 19.1+2.0

−2.5 – –

Kepler high activity 2.94 ± 0.40 1.41+1.1
−0.46 14.132+0.046

−0.035 19.2+2.8
−2.2 0.187+0.071

−0.17 0.45+0.23
−0.38

+ BIS Prot 3rd harm. 2.19+0.50
−0.43 1.20+0.46

−0.58 14.15−0.30
−0.39 52 ± 10 0.181+0.060

−0.16 0.201+0.086
−0.19

+ FF
′

3.17 ± 0.33 1.14+0.34
−0.52 14.155+0.035

−0.060 53+14
−2 0.170+0.067

−0.14 0.28+0.33
−0.28

Gaussian process high activity 2.84 ± 0.34 1.04+0.40
−0.57 14.156+0.065

−0.039 52.7+1.3
−1.1 0.150 ± 0.036 0.108+0.036

−0.051

the second best model containing three planets with eccentric orbits,
albeit with a significantly lower evidence than the two-planet model,
and thus rejected. The typical rms of the log evidences was of order
∼3 for circular orbital fits and of order ∼1 for eccentric orbital fits.

Over multiple runs with complex models, our tests showed that the
default stopping criterion of POLYCHORD was not precise enough5 for
these sort of exoplanet applications. This resulted in inconsistencies
where the sampling in some runs missed transitions to areas of higher
likelihood (see Fig. 1) and showed very different evidence values
and posterior distributions. To ensure consistent and robust runs,
the convergence criterion was lowered to values between 10−5 and
10−12 for runs with a large number of planets and complex stellar
activity models. As an historical aside, nested sampling was in fact
invented (Skilling 2006) in order to solve precisely these kind of
phase transition problems.

6 A NA LY SIS A N D RESULTS

The extent of stellar activity observed from HD 13808 was investi-
gated by looking at the activity indicators BIS, FWHM and log R′

HK.
None of them showed an obvious linear correlation with the RV
measurements. Note that this can occur e.g. when there is a relation
but with a simple time lag, as demonstrated with the case of the Sun
Collier Cameron et al. (2019). However, the log R′

HK measurements
do show a notable cycle from a low of −5.10 to a high of −4.70,

5The convergence criterion in POLYCHORD is defined as the point where the
fraction of total evidence contained in the live points drops below the default
value of 10−3 (Handley et al. 2015).

as displayed in Fig. 2. A cycle with similar shape and period is
also seen in the BIS and FWHM time series, although with smaller
amplitude. We thus decided to extend our analysis by splitting the full
RV data into two subsets based on the median(log R′

HK) = −4.90;
low- and high-activity subsets then corresponded to observations
with log R′

HK < −4.90 and log R′
HK > −4.90, respectively. Table 6

summarizes the statistics of the full data set and those two subsets.
Note that although we call one subset ‘high activity,’ HD 13 808 is
still classified as an inactive star, as an ‘active’ classification would
usually require an average of log R′

HK>−4.75 (Henry et al. 1996).
This log R′

HK cycle shows great similarities to the one of the Sun with
its recent maxima and minima being at log R′

HK 
 −4.83 and log R′
HK


 −4.96; the extrapolated log R′
HK value for the Maunder minimum

period is log R′
HK 
 −5.10 (Mamajek & Hillenbrand 2008).

6.1 Periodogram analysis

To identify strong periodicities in our time series, we computed the
Bayesian generalized Lomb–Scargle (BGLS) periodogram (Lomb
1976; Scargle 1982; Zechmeister & Kürster 2009; Mortier et al.
2015) of the two separated data subsets for the RV, the stellar activity
indicators BIS, FWHM and log R′

HKand a constant function (CF)
with identical time stamps.

The resulting BGLS periodograms are shown in Fig. 3 where
peaks in the RV periodograms are visible at ∼15 and ∼55 d. Sets
of strong peaks are visible in the BGLS periodograms of the activity
indicators log R′

HK, BIS and FWHM between 30 and 40 d and a few
between 25 and 30 d. Strong peaks are evident at ∼19 and ∼32 d
in the log R′

HK high activity periodogram, with peaks at ∼12, ∼19,
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Two Neptune mass planets orbiting HD 13808 1257

Table 11. HD 13808: Rotation periods determined by the different models.

Model Rotation period (d)

Kepler
+ BIS Prot 1st harm. 36.0414+0.0022

−0.0056

+ BIS Prot 2nd harm. 35.2516+0.0045
+0.00087

+ BIS Prot 3rd harm. 32.13212+0.00096
−0.00025

+ magn. cycle 36.0383+0.0025
−0.00068

Gaussian process 38.99 ± 0.47

Kepler low activity
+ BIS Prot 3rd harm. 36.22876+0.00094

−0.00047

Gaussian process low activity 41.32+0.64
−0.92

Kepler high activity
+ BIS Prot 3rd harm. 37.93 ± 0.46

Gaussian process high activity 40.0 ± 1.1

Table 12. MAP values and ±1σ credible intervals for the parameters of the
activity-related parameters of the GP model.

Parameter Inferred value Units

Vc 0.48 ± 0.14 m s−1

Vr 0.53+0.11
−0.53 m s−1

Lc 0.0515+0.0044
−0.0054 –

Bc 2.67+0.23
−0.32 m s−1

Br 13.8+2.8
−3.1 m s−1

PGP 38.99 ± 0.47 d
λp 0.996+0.089

−0.10 –
λe 91 ± 10 d

and ∼34 d in the BIS periodogram. The FWHM periodograms show
peaks in the region of ∼35 d.

The BGLS periodograms of the high- and low-activity subsets of
the data suggest that the RV measurements are affected by stellar
activity: note, in particular, the excess power around the putative
stellar rotation period and the first two harmonics in the high-activity
subsets of the BIS and log R′

HK time series. It is also evident that
the stellar activity indicators differ quite strongly when the star is
slightly more active; the difference between the mean log R′

HK value
of the two subsets is �

〈
log R′

HK

〉 = 0.12.

6.2 Model comparison

The different models we considered are summarized in Table 7,
along with a short description of each. The model including only
circular orbital solutions is called ‘Circular’, while the elliptical
orbital solutions are referred to as ‘Kepler’. A ‘+’ indicates that the
‘Kepler’ solution was complemented with a specific stellar activity
model, such as linear dependence on the BIS (‘Kepler + linear BIS’).
This was done equivalently for a subset of models applied to the low
and high-activity subsets of the data.

6.2.1 Results

The relative Bayesian evidences for each model with different
number of Keplerians are shown in Table 8. For ease of comparison,
we set the log evidence for models with two Keplerians to zero. Thus,
positive values are more favoured and negative ones less favoured
than the two-planet models, with significance to be interpreted
according to Jeffreys’ scale (Table 5). Table 8 also includes the rms

and median values for the RV residuals computed using the maximum
a posteriori (MAP) values of the various two-planet models.

Note that the absolute evidences of different models cannot be
meaningfully compared in a global sense, as the evidence values
depend, among other things, on the data fitted; hence, an n-Keplerian
model that fits only RVs cannot e.g. be meaningfully compared to
another n-Keplerian model that fits RV simultaneously with a BIS or
log R′

HKtime series. In passing we note, however, that it was possible
to compare the absolute evidence values of the parametric model
‘Kepler + BIS Prot 3rd harm. + magn. cycle’ with the GP model,
as these fitted the same three time series; the two-planet GP model
achieved a log evidence an order of magnitude higher than the former
model (−584 ± 3 versus −4810 ± 6). This overwhelming difference
in Bayesian evidences reflects the fact that the GP model achieved a
superior fit to the observational data (RVs, log R′

HK, and BIS series
jointly), and moreover that high-quality fits under the GP model were
localized to a comparatively small volume of prior space.

6.2.2 Spurious third and fourth planets

Table 8 shows that many of the simple parametric models – though
not the GP model – favoured the ‘detection’ of three or even four
planets. However, we have strong empirical reasons to reject models
with more than two Keplerian components.

First, we found that the periods of the third Keplerian signal (and
also the fourth, where applicable), tended to change with every run,
while the periods of ∼14 d and ∼54 d appeared as MAP values
in every run, for all models with two or more Keplerians. This is
demonstrated in Table 9, where we list the periods of the additional
Keplerian periods found by every model. The most common periods
for an ‘extra’ Keplerian were around 12 and 19 d – as it turns
out, these periods out are also strongly visible in the high-activity
periodogram of the log R′

HK and BIS time series (see Fig. 3). As
mentioned in the BGLS periodogram analysis, we interpret these
periods as harmonics of the stellar rotation period. The fact that
these periodicities manifested in Keplerian terms in all but the most
complex activity models reflect the inadequacy of the simpler models
at capturing all the activity variability – neither the 12 d nor the 19 d
Keplerian periodicities showed up under the GP model.

Secondly, it also turned out that these supposed planetary signals
described by the Keplerians either did not show up or their semi-
amplitudes decrease to below 1 m s−1 when considering only the
low-activity subset of observations. Conversely, the semiamplitudes
of the supposed third planets occurring at ∼12 d or ∼19 d increased
significantly when only the high-activity data set was modelled
compared to when using the full data set (see Table 9).

Perhaps most significantly, our GP model – which we regarded
a priori as being by far the most realistic of our activity models
– decisively favoured a two-planet interpretation of our full set
of observations. The GP modelling even favoured a two-planet
interpretation when considering only the high-activity subset of
observations, and resulted in planet properties consistent with those
derived from the low-activity subset or the full data set (see Table 10).
This was not true for the simpler parametric models; the FF

′
method

equivocated between two- and three-planet solutions, and was not
reliably able to detect the ∼54 d periodicity.

Our GP activity model, though relatively complex in its own right,
did a comparatively good job of fitting variability in RVs unrelated
to planets, when compared to most of the other activity models
(see residuals in Table 8). This is despite our requirement that the
GP fit activity-related variability in RVs simultaneously with BIS
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Table 13. MAP values and ±1σ credible intervals of the planetary parameters of the two planets in the HD 13808 system
for the two favoured models: ‘Gaussian process’ and ‘Kepler + BIS Prot 3rd harm.’

HD 13808b HD 13808c
Parameter BIS Prot 3rd harm. Gaussian process BIS Prot 3rd harm. Gaussian process

P (d) 14.1774+0.0013
−0.0011 14.1815 ± 0.0015 53.804+0.033

−0.052 53.753+0.050
−0.082

K (m s−1) 3.61 ± 0.24 3.67 ± 0.22 2.09 ± 0.25 2.18+0.22
−0.20

e 0.089+0.037
−0.065 0.071+0.027

−0.047 0.21+0.10
−0.17 0.156+0.050

−0.061

Msin (i) (M⊕) 11.44 ± 0.80 11.2+1.2
−0.66 10.0 ± 1.2 9.96+1.8

−0.96

a (au) 0.1051 ± 0.0010 0.10519+0.00093
−0.0011 0.2558 ± 0.0024 0.2554+0.0028

−0.0023

and log R′
HK time series, which ensured that the GP would be very

unlikely to try to fit planetary variability. Presumably, then, under the
GP modelling, there was little residual activity-induced variability
that could be explained using a third or fourth Keplerian term; hence,
these more complex models were rejected.

Regarding the parametric activity models (i.e. not the GP model),
the addition of extra Keplerian terms beyond the two-planet model in
many cases did enable a non-trivial fraction of extra activity-related
variability to be fitted. This may have been the case, for example,
because the amplitudes, phases, and periods of the different terms
in the harmonic models were by definition fixed, whereas the quasi-
periodic GP model is flexible enough to fit both low- and high-
activity variability, possibly with changing phases and arising from
a combination of rotation periods (as might be the case due e.g. to
differential rotation), rather than a single ‘master’ rotation period
(Rajpaul 2017). Thus, the non-GP activity models in many cases
favoured solutions with three or four Keplerian terms.

The upshot, then, is that one’s conclusions about the number of
planetary signals present in an RV time series is extremely sensitive
to whether one has modelled other, non-planetary (e.g. activity-
induced) variability present in the RVs.

6.2.3 Comments on computational costs

Given the high dimensionality of the joint stellar activity plus
planetary models we considered (over 30 parameters for some of
the four-planet plus activity models), accurate Bayesian evidence
computation required a large number of posterior samples to be
drawn – in the case of four-planet models, several hundred million
posterior samples were typically required, even with a state-of-the-
art sampler such as POLYCHORD. This did not prove too burdensome
for the parametric activity models; a typical run for a four-planet
model with ∼6 additional stellar activity modelling parameters took
30–50 h on 10 cores with 2.9 GHz clock speed each.

Evaluating a single GP likelihood, however, required among
other things inversion of a 738 × 738-element covariance matrix;
considering that we computed Bayesian evidences for models con-
taining between zero and four planets, and repeated these evidence
calculations several times, we ended up implicitly inverting large
covariance matrices many billions of times.6 The upshot was that
evaluating our GP models required of order fifty thousand CPU core
hours on a high-performance computing platform. (Attempts to speed
up computation by reducing POLYCHORD’s precision criterion led to

6While a number of techniques for speeding up GP regression do exist, e.g.
Foreman-Mackey et al. (2017), we are not aware of any that are well-suited
to cases where covariances need to be formulated over multiple inputs and
outputs simultaneously, e.g. RVs jointly with activity indicators.

unacceptably large scatter in computed evidences.) Accurate evalua-
tion of the Bayesian evidences of these GP models would simply not
have been feasible on a desktop or even a small computing cluster.

At face value, this might seem to be a serious shortcoming of the
GP model. However, we note that Bayesian evidence computation is
computationally challenging in general (Nelson et al. 2020), and it
would seem that you ‘get what you pay for’: the parametric activity
models are certainly far cheaper to evaluate, though as we argued in
Section 6.2.2, their oversimplicity inevitably leads to the detection
of spurious planets. Such issues are avoided with the GP model.

6.3 Planet characteristics

The posterior distributions for the inferred semiamplitude K, period
P and eccentricity e of the planets in all of our two-planet models
are summarized in Table 10. Despite the wide array of models
considered, the planetary parameters show a remarkable degree of
consistency, with the credible intervals for their semi-amplitudes
and eccentricities agreeing within 1σ across almost all models; the
same holds true when considering only the low-activity subset of
observations. Differences between orbital periods inferred under
different models are never greater than a fraction of a per cent.
This provide additional evidence that the detected signals are indeed
planetary and robust.

It is worth noting that the GP model favours a marginally
larger MAP semiamplitude Kb, and a marginally larger MAP semi-
amplitude Kc than the typical parametric models. However, the values
favoured by the GP model are bracketed both above and below by
other parametric models, and so are in no sense extreme; concern that
a GP might ‘absorb’ some of a planetary signal is clearly unfounded
in this case.7

Under the parametric activity models, Kc tends to decrease in
the low-activity data subset compared to the high-activity subset,
suggesting that the outer Keplerian (with period broadly similar to
the likely stellar rotation period) is actually being used to absorb some
RV variability the too-simplistic activity models cannot account for.
Kb appears comparatively insensitive to stellar activity levels, which
may reflect the fact that Pb is about 2.5 times shorter than the star’s
putative rotation period, such that little constructive or destructive
interference between the Keplerian and activity signal occurs.

Putting aside the fine-grained differences between the GP and
parametric activity models, Table 10 shows striking and remarkable
consistency between planet parameters across almost all the models
we considered, with well-constrained periods, and semiamplitudes

7After all, the framework from R15 is designed so that the GP component of
the model is only able to explain variability simultaneously present in RVs
and activity-sensitive time series; therefore, except in extremely pathological
cases, there should be little risk of the GP wrongly fitting a planetary signal.
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Two Neptune mass planets orbiting HD 13808 1259

Figure 4. Phase folded RVs of HD 13808 for the planets HD 13808b (left) and HD 13808c (right) i.e. the leftover RV when the other planetary signal, the stellar
activity model and the polynomial offset is subtracted. The black dots are the averaged RV values computed over bins of 36 deg in mean longitude and the error
bars correspond to the rms of the mean, while the grey points are the observed RV values with their error. The red line represents the calculated curve of the
planet with the MAP planetary parameter values of each model.

inconsistent with zero at >10σ levels. On this basis, we regard
our modelling to represent the secure RV detection of two planets
orbiting HD 13808. By way of contrast, it is worth noting that even
transiting planets with tightly constrained periods and orbital phases
may sometimes prove difficult to characterize, with inferred semi-
amplitudes diverging wildly depending on which model is used:
Kepler-10c is an excellent example (Fressin et al. 2011; Dumusque
et al. 2014; Weiss et al. 2016; Rajpaul, Buchhave & Aigrain 2017).
We refer, hereafter, to the planets we have detected as HD 13808b
and HD 13808c with periods of ∼14 and ∼54 d, respectively.

6.4 Stellar activity characteristics

The stellar rotation period of 38.99 ± 0.47 d inferred under the GP
model is broadly bracketed by the ∼32–41 d rotation periods inferred
by our various parametric models (Table 11), and agrees well with
the ∼40 d period estimated by Lovis et al. (2011).

The combined RV semi-amplitude ascribed to activity under the
GP model (taking into account both the convective and rotational
terms in the model, i.e. Vc and Vr) is a little under 1 m s−1; meanwhile,
the fitted RV jitter term under the GP model is of order 2 m s−1. By
contrast, the ‘Kepler + BIS Prot 3rd harm.’ model ascribes only
around 30 cm s−1 of RV variability to activity, while absorbing
nearly 6 m s−1 of variability as white-noise jitter (see Fig. 5).
These differences are not surprising, given that our quasi-periodic

GP function draws do not need to have constant amplitudes and
phases, need not be strictly periodic, etc.: consequently, the GP can fit
more activity-related variability than the more inflexible parametric
model, which must instead absorb the stellar red noise via a large jitter
term.

The GP model also allows us to constrain the evolution time-scale
of active regions: the inferred value of λe = 91 ± 10 d (Table 12) sug-
gests an active region lifetime (or spot evolution time scale) of about
two rotation periods, which is significantly longer than is observed
for active regions on the Sun (Bradshaw & Hartigan 2014). The
hyperparameter λp is harder to interpret physically, though the value
λp ∼ 1 suggests that the activity signals being modelled by the GP
are only moderately more complex than a sinusoidal model, having
on average something between three or four inflection points per
period, compared with exactly two for a sine wave (Rajpaul 2017).

In addition to the stellar activity linked to the rotation period of
the star, we are able to characterize the long-term magnetic cycle of
HD 13808. The two models considering this cycle ‘Kepler + magn.
cycle’ and ‘Kepler + BIS Prot 3rd harm. + magn. cycle’ estimate these
variations to have a period of 3682 ± 14 d and 3681 ± 19 d with RV
semiamplitudes of 1.61+0.26

−0.33 and 1.77+0.37
−0.28 m s−1, respectively. The

estimate for the RV semiamplitude of the magnetic cycle in the first
model may be affected by the lack of the short-period activity, though
the MAP values for both period and semiamplitude are consistent
within their 1σ credible intervals.

MNRAS 503, 1248–1263 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/503/1/1248/6133450 by guest on 10 Septem
ber 2021



1260 E. Ahrer et al.

Figure 5. Corner plot of the Keplerian semiamplitudes Kb, Kc, periods Pb, Pc, and eccentricities eb, ec of HD 13808b and HD 13808c, respectively, under our
two favoured models: the GP model (blue) and the Kepler + BIS Prot 3rd harmonic model (red). Kact is the semiamplitude of activity-dependent RV terms
combined in quadrature, for the harmonic model or the GP model, and σ+

RV is the additive noise (‘jitter’) parameter in either model. The dark and light filled
regions correspond, respectively, to 1σ (39.3 per cent) and 2σ (86.5 per cent) joint credible regions.

6.5 Conclusion

In summary, our favoured activity model is the GP model; we might
consider the ‘Kepler + BIS Prot 3rd harm.’ (or arguably the FF

′
)

model to be the best of the parametric activity models, even though
it falls short of the GP. Both the GP and the ‘Kepler + BIS Prot

3rd harm.’ models favour a two-planet solution over a one-planet
solution; they both strongly reject solutions containing more than
two Keplerians, supporting our non-planetary interpretation for any
‘extra’ Keplerians. In addition, they both show amongst the lowest

residual RV scatters (Table 8). However, the GP model is the only one
to reject under all circumstances solutions containing more than two
Keplerians, and to reliably detect the second planetary signal even
when considering the high-activity subset of observations. Despite
its other merits, the ‘Kepler high activity + BIS Prot 3rd harm.’ model
has the unusual disadvantage of having locked on to what appears to
be a spurious or at least unusually short stellar rotation period, unlike
the GP model and some of the other parametric activity models (see
Table 11).
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Two Neptune mass planets orbiting HD 13808 1261

Figure 6. Model prediction (red) with posterior predictive uncertainty (shaded blue) and their residuals for ‘Kepler + BIS Prot 3rd harm.’ and ‘Gaussian process’
models; RV measurements and corresponding uncertainties appear in black. Two representative subsets of observations are shown, one from the high-activity
(left) and low-activity (right) phases of the star.

The MAP values and their corresponding planetary characteristics
for our two favoured models are summarized in Table 13. The inferred
minimum masses for HD 13808b and HD 13808c are ∼11 M⊕ and
∼10 M⊕ (model dependent), and their orbital semimajor axes around
the host star are ∼0.11 AU and 0.26 au, respectively. As Neptune has

a mass of ∼17 M⊕, this leads us to the conclusion that both planets
are likely warm Neptunes.

The phase folded RVs for both planets and both models are
displayed in Fig. 4, and the corner plot corresponding to the posteriors
of both models is presented in Fig. 5. The comparison of the
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posteriors of both favoured models shows that – despite taking very
different approaches to modelling stellar activity – the planetary
parameters do agree within their 1σ credible intervals. It is also
interesting to note how narrow (and likely wildly overoptimistic) the
posterior distribution for the stellar rotation period inferred by the
harmonic model is.

To demonstrate the goodness of fit, the RV predictions of our two
favoured models in comparison to the data are shown in two parts of
the data set in Fig. 6, one being in the high- and one in the low-activity
subsets of observations.

7 D ISCUSSION

We presented a comprehensive study of the HD 13808 RV data
provided by the HARPS spectrograph. In particular, we tested and
compared multiple approaches to stellar activity modelling.

We found that Bayesian evidence comparison is, by itself, not
sufficient for deciding on the number of planets present: when stellar
activity is not modelled adequately, extra ‘planets’ might be favoured
to account for residual variability. Only our GP model favoured
two planets (both of which we believe to be extremely secure
detections) over a higher number of planets under all circumstances
we considered, including modelling only a high-activity subset of
observations; the parameters for the additional ‘planets’ suggested
by other models were highly variable and model sensitive, and/or
corresponded to likely activity variability (cf. periods in Table 9,
particularly for the high-activity subset). However, some of our more
complex stellar activity models such as the multiharmonic and FF

′

stellar activity models did seem to describe the activity variability
better than more simplistic parametric models, based on both the
decrease in residual RV rms scatter and the decrease in evidence
for a three-planet solution versus the two-planet solution. In short,
model comparison using Bayesian evidence is only as good as the
models considered.

Reassuringly, when modelling the full set of observations, the
RV signals of HD 13808b and HD 13808c were without exception
detected at a >10σ level with every activity model we considered,
with the planets’ characteristics remarkably consistent across all
models. Taking all the observations into account, our two favoured
models found the two planets HD 13808b and HD 13808c to orbit
their host star with periods of ∼14.2 and 53.8 d at distances of ∼0.11
and 0.26 au, with minimum masses of 11 and 10 M⊕, respectively.
The planetary parameters inferred from the low-activity observations
alone are also mostly within agreement with those derived from the
full data set.

The influence of stellar activity on the planets’ characteristics
was evident, however, when considering the parameters yielded
by the models applied to the high-activity data subset where the
log R′

HKvalue of the star was >−4.90. For example, even under a
single model (‘Kepler high activity + BIS Prot 3rd harm.’), the MAP
RV semi-amplitude of HD 13808b decreases from 3.71 to 2.19 m s−1

when moving from the low- to high-activity subset of observations,
although these two semi-amplitudes are inconsistent at only a ∼2σ

level. Using the GP – the only model reliably to detect HD 13808c in
the high-activity subset of observations – the MAP RV semiamplitude
of HD 13808c decreases from 1.78 to 1.04 m s−1, although in this
case at least the semiamplitudes do remain consistent within ∼1σ .

To conclude, even though in our case the planetary parameter
values were relatively insensitive to the choice of stellar activity
model when analysing the full data set (246 measurements), caution
would be essential on smaller data sets, or indeed when trying to
characterize weaker planetary signals. In particular, the changes

in the inferred planet parameters when considering only the high-
activity subset of our data underscores the importance of stellar
activity modelling even for a host star nominally classified as
‘inactive’.
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