221 research outputs found

    Spontaneous emission of a nanoscopic emitter in a strongly scattering disordered medium

    Full text link
    Fluorescence lifetimes of nitrogen-vacancy color centers in individual diamond nanocrystals were measured at the interface between a glass substrate and a strongly scattering medium. Comparison of the results with values recorded from the same nanocrystals at the glass-air interface revealed fluctuations of fluorescence lifetimes in the scattering medium. After discussing a range of possible systematic effects, we attribute the observed lengthening of the lifetimes to the reduction of the local density of states. Our approach is very promising for exploring the strong three-dimensional localization of light directly on the microscopic scale.Comment: 9 pages, 4 figure

    Simulations of a double-diffusive interface in the diffusive convection regime

    Get PDF
    Three-dimensional direct numerical simulations are performed that give us an in-depth account of the evolution and structure of the double-diffusive interface. We examine the diffusive convection regime, which, in the oceanographically relevant case, consists of relatively cold fresh water above warm salty water. A ‘double-boundary-layer' structure is found in all of the simulations, in which the temperature ( TT ) interface has a greater thickness than the salinity ( SS ) interface. Therefore, thin gravitationally unstable boundary layers are maintained at the edges of the diffusive interface. The TSTS -interface thickness ratio is found to scale with the diffusivity ratio in a consistent manner once the shear across the boundary layers is accounted for. The turbulence present in the mixed layers is not able to penetrate the stable stratification of the interface core, and the TSTS -fluxes through the core are given by their molecular diffusion values. Interface growth in time is found to be determined by molecular diffusion of the SS -interface, in agreement with a previous theory. The stability of the boundary layers is also considered, where we find boundary layer Rayleigh numbers that are an order of magnitude lower than previously assume

    Is Lake Prespa Jeopardizing the Ecosystem of Ancient Lake Ohrid?

    Get PDF
    Lake Prespa and Lake Ohrid, located in south-eastern Europe, are two lakes of extraordinary ecological value. Although the upstream Lake Prespa has no surface outflow, its waters reach the 160m lower Lake Ohrid through underground hydraulic connections. Substantial conservation efforts concentrate on oligotrophic downstream Lake Ohrid, which is famous for its large number of endemic and relict species. In this paper, we present a system analytical approach to assess the role of the mesotrophic upstream Lake Prespa in the ongoing eutrophication of Lake Ohrid. Almost the entire outflow from Lake Prespa is found to flow into Lake Ohrid through karst channels. However, 65% of the transported phosphorus is retained within the aquifer. Thanks to this natural filter, Lake Prespa does not pose an immediate threat to Lake Ohrid. However, a potential future four-fold increase of the current phosphorus load from Lake Prespa would lead to a 20% increase (+0.9mg P m−3) in the current phosphorus content of Lake Ohrid, which could jeopardize its fragile ecosystem. While being a potential future danger to Lake Ohrid, Lake Prespa itself is substantially endangered by water losses to irrigation, which have been shown to amplify its eutrophicatio

    Carbonate sedimentation and effects of eutrophication observed at the Kališta subaquatic springs in Lake Ohrid (Macedonia)

    Get PDF
    To date, little is known about the role of spring waters with respect to authigenic carbonate precipitation in a shallow lacustrine setting. Lake Ohrid, located in Southeastern Europe, is a large lake fed to over 50% by karstic springs of which half enter subaquatically and influence significantly its ecology and species distribution. In order to evaluate how sedimentological processes are influenced by such shallow-water springs, the Kališta subaquatic spring area in the north west of Lake Ohrid was investigated by a sidescan sonar survey and with sediment traps and three transects of gravity short cores. Results indicate that sedimentation in the spring area is dominated by authigenic carbonate precipitation. High sedimentation rates and evidences for bio-induced precipitation processes were observed in the water column and in the sediments. Two distinct stratigraphic units characterize the shallow subsurface, both composed of carbonate silts with high carbonate contents of up to 96%, but differing in color, carbonate content and diatom content. A chronological correlation of the cores by radiocarbon dates and <sup>137</sup>Cs activities places the transition between the two stratigraphic units after ~1955 AD. At that time, coastal sedimentation changed drastically to significantly darker sediments with higher contents of organic matter and more abundant diatoms. This change coincides with the recent human impact of littoral eutrophication

    Optimizing the parameterization of deep mixing and internal seiches in one-dimensional hydrodynamic models: a case study with Simstrat v1.3

    Get PDF
    This paper presents an improvement of a one-dimensional lake hydrodynamic model (Simstrat) to characterize the vertical thermal structure of deep lakes. Using physically based arguments, we refine the transfer of wind energy to basin-scale internal waves (BSIWs). We consider the properties of the basin, the characteristics of the wind time series and the stability of the water column to filter and thereby optimize the magnitude of wind energy transferred to BSIWs. We show that this filtering procedure can significantly improve the accuracy of modelled temperatures, especially in the deep water of lakes such as Lake Geneva, for which the root mean square error between observed and simulated temperatures was reduced by up to 40 %. The modification, tested on four different lakes, increases model accuracy and contributes to a significantly better reproduction of seasonal deep convective mixing, a fundamental parameter for biogeochemical processes such as oxygen depletion. It also improves modelling over long time series for the purpose of climate change studies

    Simulations of a double-diffusive interface in the diffusive convection regime

    Get PDF
    Three-dimensional direct numerical simulations are performed that give us an in-depth account of the evolution and structure of the double-diffusive interface. We examine the diffusive convection regime, which, in the oceanographically relevant case, consists of relatively cold fresh water above warm salty water. A 'double-boundary-layer' structure is found in all of the simulations, in which the temperature (T) interface has a greater thickness than the salinity (S) interface. Therefore, thin gravitationally unstable boundary layers are maintained at the edges of the diffusive interface. The TS-interface thickness ratio is found to scale with the diffusivity ratio in a consistent manner once the shear across the boundary layers is accounted for. The turbulence present in the mixed layers is not able to penetrate the stable stratification of the interface core, and the TS-fluxes through the core are given by their molecular diffusion values. Interface growth in time is found to be determined by molecular diffusion of the S-interface, in agreement with a previous theory. The stability of the boundary layers is also considered, where we find boundary layer Rayleigh numbers that are an order of magnitude lower than previously assumed

    Effects of a fire response trait on diversification in replicated radiations.

    Get PDF
    Fire has been proposed as a factor explaining the exceptional plant species richness found in Mediterranean regions. A fire response trait that allows plants to cope with frequent fire by either reseeding or resprouting could differentially affect rates of species diversification. However, little is known about the generality of the effects of differing fire response on species evolution. We study this question in the Restionaceae, a family that radiated in Southern Africa and Australia. These radiations occurred independently and represent evolutionary replicates. We apply Bayesian approaches to estimate trait-specific diversification rates and patterns of climatic niche evolution. We also compare the climatic heterogeneity of South Africa and Australia. Reseeders diversify faster than resprouters in South Africa, but not in Australia. We show that climatic preferences evolve more rapidly in reseeder lineages than in resprouters and that the optima of these climatic preferences differ between the two strategies. We find that South Africa is more climatically heterogeneous than Australia, independent of the spatial scale we consider. We propose that rapid shifts between states of the fire response trait promote speciation by separating species ecologically, but this only happens when the landscape is sufficiently heterogeneous

    Increased sediment oxygen flux in lakes and reservoirs:The impact of hypolimnetic oxygenation

    Get PDF
    Hypolimnetic oxygenation is an increasingly common lake management strategy for mitigating hypoxia/anoxia and associated deleterious effects on water quality. A common effect of oxygenation is increased oxygen consumption in the hypolimnion and predicting the magnitude of this increase is the crux of effective oxygenation system design. Simultaneous measurements of sediment oxygen flux (JO2) and turbulence in the bottom boundary layer of two oxygenated lakes were used to investigate the impact of oxygenation on JO2. Oxygenation increased JO2 in both lakes by increasing the bulk oxygen concentration, which in turn steepens the diffusive gradient across the diffusive boundary layer. At high flow rates, the diffusive boundary layer thickness decreased as well. A transect along one of the lakes showed JO2 to be spatially quite variable, with near-field and far-field JO2 differing by a factor of 4. Using these in situ measurements, physical models of interfacial flux were compared to microprofile-derived JO2 to determine which models adequately predict JO2 in oxygenated lakes. Models based on friction velocity, turbulence dissipation rate, and the integral scale of turbulence agreed with microprofile-derived JO2 in both lakes. These models could potentially be used to predict oxygenation-induced oxygen flux and improve oxygenation system design methods for a broad range of reservoir systems

    Evaluation and metrological performance of a novel ionisation vacuum gauge suitable as reference standard

    Get PDF
    Funding Information: This work has received funding from the EMPIR programme (projects 16NRM05 and 20SIP01) co-financed by the Participating States and from the European Union's Horizon 2020 research and innovation programme and the Portuguese National Funding Agency for Science, Research and Technology in the framework of the project UIDB/FIS/ 00068/2020. Publisher Copyright: © 2023 The Author(s)Recently, a new type of ionization vacuum gauge was introduced, which was proposed as a reference and transfer standard in the range of 10-6 Pa to 10-2 Pa because of its excellent stability and linearity. In contrast to present models of ionisation vacuum gauges, all electrons have a well-defined path length through the ionisation space. This even allows one to predict the sensitivity for a gas species provided that the ionisation cross section of the gas molecules for electrons between 50 eV and 200 eV is known. Following the development of this gauge we investigated its metrological performance in terms of linearity, resolution, repeatability, reproducibility, transport and long-term stability, disturbances by magnetic fields, influence of the surrounding earth potential and so on. The gauge demonstrated excellent metrological properties and is indeed suitable as an accurate reference and transfer standard, but can also provide important economic benefits to manufacturers and users.publishersversionpublishe
    corecore