96 research outputs found

    Prediction of cerebral perfusion pressure during carotid surgery – A computational fluid dynamics approach

    Get PDF
    Background: Maintaining cerebral perfusion pressure in the brain when a carotid artery is closed during vascular surgery is critical for avoiding intraoperative hypoperfusion and risk of ischemic stroke. Here we propose and evaluate a method based on computational fluid dynamics for predicting patient-specific cerebral perfusion pressures at carotid clamping during carotid endarterectomy. Methods: The study consisted of 22 patients with symptomatic carotid stenosis who underwent carotid endarterectomy (73 ± 5 years, 59–80 years, 17 men). The geometry of the circle of Willis was obtained preoperatively from computed tomography angiography and corresponding flow rates from four-dimensional flow magnetic resonance imaging. The patients were also classified as having a present or absent ipsilateral posterior communicating artery based on computed tomography angiography. The predicted mean stump pressures from computational fluid dynamics were compared with intraoperatively measured stump pressures from carotid endarterectomy. Findings: On group level, there was no difference between the predicted and measured stump pressures (−0.5 ± 13 mmHg, P = 0.86) and the pressures were correlated (r = 0.44, P = 0.039). Omitting two outliers, the correlation increased to r = 0.78 (P < 0.001) (−1.4 ± 8.0 mmHg, P = 0.45). Patients with a present ipsilateral posterior communicating artery (n = 8) had a higher measured stump pressure than those with an absent artery (n = 12) (P < 0.001). Interpretation: The stump pressure agreement indicates that the computational fluid dynamics approach was promising in predicting cerebral perfusion pressures during carotid clamping, which may prove useful in the preoperative planning of vascular interventions.publishedVersio

    Vittrup Man–The life-history of a genetic foreigner in Neolithic Denmark

    Get PDF
    The lethally maltreated body of Vittrup Man was deposited in a Danish bog, probably as part of a ritualised sacrifice. It happened between c. 3300 and 3100 cal years BC, i.e., during the period of the local farming-based Funnel Beaker Culture. In terms of skull morphological features, he differs from the majority of the contemporaneous farmers found in Denmark, and associates with hunter-gatherers, who inhabited Scandinavia during the previous millennia. His skeletal remains were selected for transdisciplinary analysis to reveal his life-history in terms of a population historical perspective. We report the combined results of an integrated set of genetic, isotopic, physical anthropological and archaeological analytical approaches. Strontium signature suggests a foreign birthplace that could be in Norway or Sweden. In addition, enamel oxygen isotope values indicate that as a child he lived in a colder climate, i.e., to the north of the regions inhabited by farmers. Genomic data in fact demonstrates that he is closely related to Mesolithic humans known from Norway and Sweden. Moreover, dietary stable isotope analyses on enamel and bone collagen demonstrate a fisher-hunter way of life in his childhood and a diet typical of farmers later on. Such a variable life-history is also reflected by proteomic analysis of hardened organic deposits on his teeth, indicating the consumption of forager food (seal, whale and marine fish) as well as farmer food (sheep/goat). From a dietary isotopic transect of one of his teeth it is shown that his transfer between societies of foragers and farmers took place near to the end of his teenage years

    Improved learning of basic mechanics by student active teaching methods

    Get PDF
    The teaching of the basic courses in mechanics at Luleå University of Technology is carried out as lessons. However, the tightening of the economic resources has resulted in larger classes and a considerable reduction of the number of lessons. With well over 30 students in the class most of the advantages with lessons are lost. The lessons tend towards formal lectures. The teaching loses in quality and will not be effective for the students' learning. Mechanics is a subject in which the theory is very close coupled to our everyday surroundings (e.g. vehicles, constructions, machines etc.). To be able to put the theory into practice a deep understanding is important. The main purpose of this project is therefore to get the student to take a larger responsibility for acquiring knowledge and under-standing, and also gain experiences of how to organise the learning and how to work in groups, i.e. an overall method for studying. A second aim is to make the teaching more effective in that the teacher will be involved mainly in those items which the students find difficult and need help with. Important is then to produce methods to find those items on which the teaching should be focused

    Static electrification of teflon by metals

    No full text
    The electrification of a system consisting of a metal and polytetrafluoro-ethylene (Teflon) has been investigated under relative motion. First, the electrification charge received by the insulator was measured when velocity, radius of curvature of the metal electrode and normal force were varied. The measurements were performed both in atmospheric pressure and later under vacuum, since electrical breakdown sometimes limited the charge of the insulator.The results of these investigations indicated that the electrification charge received by the insulator is proportional to the real area of contact. Electrification in the sliding mode might therefore be analysed and interpreted as simply as in lifting experiments.Electrification experiments were then carried out using several metals,and a linear relation was found between the insulator charge density and the metal work function. This result together with the short charging time observed suggest a charging mechanism, in which electrons from the metal fill empty surface states in the insulator up to a level corresponding to the Fermi level of the metal.digitalisering@um

    Static electrification of teflon by metals

    No full text
    The electrification of a system consisting of a metal and polytetrafluoro-ethylene (Teflon) has been investigated under relative motion. First, the electrification charge received by the insulator was measured when velocity, radius of curvature of the metal electrode and normal force were varied. The measurements were performed both in atmospheric pressure and later under vacuum, since electrical breakdown sometimes limited the charge of the insulator.The results of these investigations indicated that the electrification charge received by the insulator is proportional to the real area of contact. Electrification in the sliding mode might therefore be analysed and interpreted as simply as in lifting experiments.Electrification experiments were then carried out using several metals,and a linear relation was found between the insulator charge density and the metal work function. This result together with the short charging time observed suggest a charging mechanism, in which electrons from the metal fill empty surface states in the insulator up to a level corresponding to the Fermi level of the metal.digitalisering@um

    Cerebral blood flow and intracranial pulsatility studied with MRI : measurement, physiological and pathophysiological aspects

    No full text
    During each cardiac cycle pulsatile arterial blood inflates the vascular bed of the brain, forcing cerebrospinal fluid (CSF) and venous blood out of the cranium. Excessive arterial pulsatility may be part of a harmful mechanism causing cognitive decline among elderly. Additionally, restricted venous flow from the brain is suggested as the cause of multiple sclerosis. Addressing hypotheses derived from these observations requires accurate and reliable investigational methods. This work focused on assessing the pulsatile waveform of cerebral arterial, venous and CSF flows. The overall aim of this dissertation was to explore cerebral blood flow and intracranial pulsatility using MRI, with respect to measurement, physiological and pathophysiological aspects. Two-dimensional phase contrast magnetic resonance imaging (2D PCMRI) was used to assess the pulsatile waveforms of cerebral arterial, venous and CSF flow. The repeatability was assessed in healthy young subjects. The 2D PCMRI measurements of cerebral arterial, venous and CSF pulsatility were generally repeatable but the pulsatility decreased systematically during the investigation. A method combining 2D PCMRI measurements with invasive CSF infusion tests to determine the magnitude and distribution of compliance within the craniospinal system was developed and applied in a group of healthy elderly. The intracranial space contained approximately two thirds of the total craniospinal compliance. The magnitude of craniospinal compliance was less than suggested in previous studies. The vascular hypothesis for multiple sclerosis was tested. Venous drainage in the internal jugular veins was compared between healthy controls and multiple sclerosis patients using 2D PCMRI. For both groups, a great variability in the internal jugular flow was observed but no pattern specific to multiple sclerosis could be found. Relationships between regional brain volumes and potential biomarkers of intracranial cardiac-related pulsatile stress were assessed in healthy elderly. The biomarkers were extracted from invasive CSF pressure measurements as well as 2D PCMRI acquisitions. The volumes of temporal cortex, frontal cortex and hippocampus were negatively related to the magnitude of cardiac-related intracranial pulsatility. Finally, a potentially improved workflow to assess the volume of arterial pulsatility using time resolved, four-dimensional phase contrast MRI measurements (4D PCMRI) was evaluated. The measurements showed good agreement with 2D PCMRI acquisitions. In conclusion, this work showed that 2D PCMRI is a feasible tool to study the pulsatile waveforms of cerebral blood and CSF flow. Conventional views regarding the magnitude and distribution of craniospinal compliance was challenged, with important implications regarding the understanding of how intracranial vascular pulsatility is absorbed. A first counterpoint to previous near-uniform observations of obstructions in the internal jugular veins in multiple sclerosis was provided. It was demonstrated that large cardiac- related intracranial pulsatility were related to smaller volumes of brain regions that are important in neurodegenerative diseases among elderly. This represents a strong rationale to further investigate the role of excessive intracranial pulsatility in cognitive impairment and dementia. For that work, 4D PCMRI will facilitate an effective analysis of cerebral blood flow and pulsatility.

    4D flow MRI hemodynamic biomarkers for cerebrovascular diseases

    No full text
    Alterations in cerebral blood flow are common in several neurological diseases among the elderly including stroke, cerebral small vessel disease, vascular dementia, and Alzheimer's disease. 4D flow magnetic resonance imaging (MRI) is a relatively new technique to investigate cerebrovascular disease, and makes it possible to obtain time-resolved blood flow measurements of the entire cerebral arterial venous vasculature and can be used to derive a repertoire of hemodynamic biomarkers indicative of cerebrovascular health. The information that can be obtained from one single 4D flow MRI scan allows both the investigation of aberrant flow patterns at a focal location in the vasculature as well as estimations of brain-wide disturbances in blood flow. Such focal and global hemodynamic biomarkers show the potential of being sensitive to impending cerebrovascular disease and disease progression and can also become useful during planning and follow-up of interventions aiming to restore a normal cerebral circulation. Here, we describe 4D flow MRI approaches for analyzing the cerebral vasculature. We then survey key hemodynamic biomarkers that can be reliably assessed using the technique. Finally, we highlight cerebrovascular diseases where one or multiple hemodynamic biomarkers are of central interest

    Cerebral arterial pulsatility is associated with features of small vessel disease in patients with acute stroke and TIA : a 4D flow MRI study

    No full text
    Cerebral small vessel disease (SVD) is a major cause of stroke and cognitive impairment. However, the underlying mechanisms behind SVD are still poorly understood. High cerebral arterial pulsatility has been suggested as a possible cause of SVD. In population studies, arterial pulsatility has been linked to white matter hyperintensities (WMH), cerebral atrophy, and cognitive impairment, all features of SVD. In stroke, pulsatility data are scarce and contradictory. The aim of this study was to investigate the relationship between arterial pulsatility and SVD in stroke patients. With a cross-sectional design, 89 patients with acute ischemic stroke or TIA were examined with MRI. A neuropsychological assessment was performed 1 year later. Using 4D flow MRI, pulsatile indices (PI) were calculated for the internal carotid artery (ICA) and middle cerebral artery (M1, M3). Flow volume pulsatility (FVP), a measure corresponding to the cyclic expansion of the arterial tree, was calculated for the same locations. These parameters were assessed for associations with WMH volume, brain volume and cognitive function. ICA-FVP was associated with WMH volume (β = 1.67, 95% CI: [0.1, 3.24], p = 0.037). M1-PI and M1-FVP were associated with decreasing cognitive function (β = - 4.4, 95% CI: [- 7.7, - 1.1], p = 0.009 and β = - 13.15, 95% CI: [- 24.26, - 2.04], p = 0.02 respectively). In summary, this supports an association between arterial pulsatility and SVD in stroke patients, and provides a potential target for further research and preventative treatment. FVP may become a useful biomarker for assessing pulsatile stress with PCMRI and 4D flow MRI
    corecore