5,596 research outputs found

    Thickness Dependent Structural, Magnetic and Transport Properties of of Cu / Co Thin Film and Multilayer Structures

    Get PDF
    Structural, magnetic and transport properties of electron beam evaporated Co/Cu thin film and multilayer structures (MLS) having different layer thicknesses have been characterized using XRD, MOKE and resistivity techniques. The structural studies show different crystal structures for different sub-layer thicknesses. The Co (300 Ǻ) single layer film is amorphous, while Cu (300 Ǻ) film is microcrystalline in nature. The particle size is found to decrease as the number of interfaces increase. The corresponding magnetic and resistivity measurements show an increase in saturation field and resistivity. However, coercivity decreases with decrease in particle size. The results conclude that these properties are greatly influenced by various micro structural parameters such as layer thickness, number of bilayers and the quality of interfaces formed under different growth conditions

    Entanglement induced Sub-Planck structures

    Full text link
    We study Wigner function of a system describing entanglement of two cat-states. Quantum interferece arising due to entanglement is shown to produce sub-Planck structures in the phase-space plots of the Wigner function. Origin of these structures in our case depends on entanglement unlike those in Zurek \cite{Zurek}. It is argued that the entangled cat-states are better suited for carrying out precision measurements.Comment: 6 pages 2 figures (revised version include more quantitative discussion

    Spin-String Interaction in QCD Strings

    Full text link
    I consider the question of the interaction between a QCD string and the spin of a quark or an antiquark on whose worldline the string terminates. The problem is analysed from the point of view of a string representation for the expectation value of a Wilson loop for a spin-half particle. A string representation of the super Wilson loop is obtained starting from an effective string representation of a Wilson Loop. The action obtained in this manner is invariant under a worldline supersymmetry and has a boundary term which contains the spin-string interaction. For rectangular loops the spin-string interaction vanishes and there is no spin-spin term in the resulting heavy quark potential. On the other hand if an allowance is made for the finite intrinsic thickness of the flux-tube, by assuming that the spin-string interaction takes place not just at the boundary of the string world-sheet but extends to a distance of the order of the intrinsic thickness of the flux tube, then we do obtain a spin-spin interaction which falls as the fifth power of the distance. Such a term was previously suggested by Kogut and Parisi in the context of a flux-tube model of confinement.Comment: 19 pages, 1 figure; Published version with added discussion and references in section

    Primary accumulation in the Soviet transition

    Get PDF
    The Soviet background to the idea of primary socialist accumulation is presented. The mobilisation of labour power and of products into public sector investment from outside are shown to have been the two original forms of the concept. In Soviet primary accumulation the mobilisation of labour power was apparently more decisive than the mobilisation of products. The primary accumulation process had both intended and unintended results. Intended results included bringing most of the economy into the public sector, and industrialisation of the economy as a whole. Unintended results included substantial economic losses, and the proliferation of coercive institutions damaging to attainment of the ultimate goal - the building of a communist society

    Temperature Variation of Debye-Waller Factor and Mean Square Displacement for some Transition Metals

    Get PDF

    Turbulence Model Effects on RANS Simulations of the HIFiRE Flight 2 Ground Test Configurations

    Get PDF
    The Wind-US Reynolds-averaged Navier-Stokes solver was applied to the Hypersonic International Flight Research Experimentation (HIFiRE) Flight 2 scramjet ground test configuration. Two test points corresponding to flight Mach numbers of 5.9 and 8.9 were examined. The emphasis was examining turbulence model effects on the prediction of flow path pressures. Three variants of the Menter k-omega turbulence model family were investigated. These include the baseline (BSL) and shear stress transport (SST) as well as a modified SST model where the shear stress limiter was altered. Variations in the turbulent Schmidt number were also considered. Choice of turbulence model had a substantial effect on prediction of the flow path pressures. The BSL model produced the highest pressures and the SST model produced the lowest pressures. As expected, the settings for the turbulent Schmidt number also had significant effects on predicted pressures. Small values for the turbulent Schmidt number enabled more rapid mass transfer, faster combustion, and in turn higher flowpath pressures. Optimal settings for turbulence model and turbulent Schmidt number were found to be rather case dependent, as has been concluded in other scramjet investigations

    Artificial Neural Network Based Hybrid Spectrum Sensing Scheme for Cognitive Radio

    Get PDF

    A Candida albicans CRISPR system permits genetic engineering of essential genes and gene families

    Get PDF
    Candida albicans is a pathogenic yeast that causes mucosal and systematic infections with high mortality. The absence of facile molecular genetics has been a major impediment to analysis of pathogenesis. The lack of meiosis coupled with the absence of plasmids makes genetic engineering cumbersome, especially for essential functions and gene families. We describe a C. albicans CRISPR system that overcomes many of the obstacles to genetic engineering in this organism. The high frequency with which CRISPR-induced mutations can be directed to target genes enables easy isolation of homozygous gene knockouts, even without selection. Moreover, the system permits the creation of strains with mutations in multiple genes, gene families, and genes that encode essential functions. This CRISPR system is also effective in a fresh clinical isolate of undetermined ploidy. Our method transforms the ability to manipulate the genome of Candida and provides a new window into the biology of this pathogen.National Institutes of Health (U.S.) (GM035010
    corecore