20 research outputs found

    In Vivo Fate and Activity of Second- versus Third-Generation CD19-Specific CAR-T Cells in B Cell Non-Hodgkin's Lymphomas

    Get PDF
    Second-generation (2G) chimeric antigen receptors (CARs) targeting CD19 are highly active against B cell malignancies, but it is unknown whether any of the costimulatory domains incorporated in the CAR have superior activity to others. Because CD28 and 4-1BB signaling activate different pathways, combining them in a single third-generation (3G) CAR may overcome the limitations of each individual costimulatory domain. We designed a clinical trial in which two autologous CD19-specific CAR-transduced T cell products (CD19.CARTs), 2G (with CD28 only) and 3G (CD28 and 4-1BB), were infused simultaneously in 16 patients with relapsed or refractory non-Hodgkin's lymphoma. 3G CD19.CARTs had superior expansion and longer persistence than 2G CD19.CARTs. This difference was most striking in the five patients with low disease burden and few circulating normal B cells, in whom 2G CD19.CARTs had limited expansion and persistence and correspondingly reduced area under the curve. Of the 11 patients with measurable disease, three achieved complete responses and three had partial responses. Cytokine release syndrome occurred in six patients but was mild, and no patient required anti-IL-6 therapy. Hence, 3G CD19.CARTs combining 4-1BB with CD28 produce superior CART expansion and may be of particular value when treating low disease burden in patients whose normal B cells are depleted by prior therapy. CD19.CAR-T cells are highly active against B cell malignancies, but the optimal CAR structure is controversial. Ramos et al. show that combining 4-1BB and CD28 endodomains produces superior CD19-CAR-T cell expansion and persistence compared to CD28 alone and that these cells are clinically effective and safe in aggressive lymphomas

    Dissociation of the morphological correlates of stress-induced anxiety and fear

    No full text
    Chronic stress is a powerful modulator of emotional behaviour. Previous studies have shown that distinct neuronal pathways modulate different emotional behaviours: while the amygdala plays a key role in fear-conditioned-to-cue stimuli, the bed nucleus of stria terminalis (BNST) is implicated in anxiety behaviour and responses to contextual stimuli. In addition, the BNST is directly involved in the regulation of the hypothalamus-pituitary-adrenal (HPA) axis. In the present study, we assessed anxiety (measured in the elevated-plus maze and acoustic startle apparatus) and fear-conditioned responses to light stimuli in rats that had been exposed to either chronic unpredictable stress or corticosterone for 28 days; thereafter, stereological estimates of the BNST and amygdaloid complex were performed, followed by three-dimensional morphometric dendritic analysis. Results show that chronic stress induces hyperanxiety without influencing fear conditioning or locomotion and exploratory activity. Stress-induced hyperanxiety was correlated with increased volumes of the BNST but not of the amygdala. Dendritic remodelling was found to make a significant contribution to the stress-induced increase in BNST volume, primarily due to changes in the anteromedial area of the BNST, an area strongly implicated in emotional behaviour and in the neuroendocrine control of the stress response. Importantly, all of the effects of stress were recapitulated by exogenous corticosterone. In conclusion, this study shows that chronic stress impacts on BNST structure and function; its findings pertain to the modulation of emotional behaviour and the maladaptive response to stress

    Somatic SF3B1 Mutation in Myelodysplasia with Ring Sideroblasts

    Get PDF
    Chronic Myeloid Disorders Working Group of the International Cancer Genome Consortium.-- et al.The myelodysplastic syndromes are a heterogeneous group of hematologic cancers characterized by low blood counts, most commonly anemia, and a risk of progression to acute myeloid leukemia.1 These disorders have increased in prevalence and are expected to continue to do so. Blood films and bone marrow¿biopsy specimens from patients with myelodysplastic syndromes show dysplastic changes in myeloid cells, with abnormal proliferation and differentiation of one or more lineages. Target genes of recurrent chromosomal aberrations have been mapped,2,3 and several genes have been identified as recurrently mutated in these disorders, including NRAS (encoding neuroblastoma RAS viral oncogene homologue), TP53 (encoding tumor protein p53), RUNX1 (encoding runt-related transcription factor 1), CBL (encoding Cas-Br-M ecotropic retroviral transforming sequence),4,5 TET2 (encoding tet oncogene family member 2),6,7 ASXL1 (encoding additional sex combs¿like protein 1),8,9 and EZH2 (encoding enhancer of zeste homologue 2).10 With the exception of TET2, most of these genes are mutated in no more than 5 to 15% of cases, and generally the mutation rates are lower in the more benign subtypes of the disease. The myelodysplastic syndromes can be divided into several categories on the basis of bone marrow and peripheral-blood morphologic characteristics and cytogenetic changes.11 In low-risk disease, such as refractory anemia, cytopenias are the major clinical challenge, whereas high-risk disease, such as refractory anemia with excess blasts, is characterized by both cytopenias and a high rate of transformation to acute myeloid leukemia. More than a quarter of patients with myelodysplastic syndromes have large numbers of ring sideroblasts in the bone marrow,12 a sufficiently distinctive morphologic abnormality to warrant a separate designation. Ring sideroblasts are characteristically seen on iron staining of bone marrow aspirates as differentiating erythroid cells with a complete or partial ring of iron-laden mitochondria surrounding the nucleus. Several genetic lesions underpinning inherited sideroblastic anemias have been identified,13 including loss-of-function mutations in the genes ALAS2 (encoding delta aminolevulinate synthase 2), ABCB7 (encoding ATP-binding cassette, subfamily B, member 7), and SLC25A38 (solute carrier family 25, member 38). The pathogenesis of ring sideroblasts in myelodysplastic syndromes, however, remains obscure, although gene-expression studies have revealed up-regulation of genes involved in heme synthesis (including ALAS2) and down-regulation of ABCB7.14,15 We reasoned that the identification of recurrently mutated cancer genes in low-grade myelodysplastic syndromes could prove useful for the diagnosis of these disorders and provide new insights into the molecular pathogenesis of these syndromesSupported by grants from the Wellcome Trust (077012/Z/05/Z, for the overall study, as well as WT088340MA, to Dr. Campbell), the Kay Kendall Leukaemia Fund, Leukemia Lymphoma Research (for the overall study and to Drs. Boultwood, Green, Vyas, and Wainscoat), the Adenoid Cystic Carcinoma Research Foundation, the Medical Research Council (MRC) (to Dr. Warren), the Oxford National Institutes for Health Research Biomedical Research Centre (to Drs. Boultwood, Vyas, and Wainscoat), the Swedish Cancer Society (to Dr. Hellstrom-Lindburg), the International Human Frontier Science Program Organization (to Dr. Varela), the Department of Veterans Affairs and the National Institutes of Health (R01-124929, P01-155249, P50- 100007, and P01-78378, to Drs. Munshi and Anderson), the Association for International Cancer Research and the Leukemia Lymphoma Society (to Drs. Warren and Green), Associazione Italiana per la Ricerca sul Cancro (to the University of Pavia, the University of Milan Bicocca, and Dr. Cazzola), and Fondazione Cariplo (to the University of Pavia and the University of Milan Bicocca).Peer Reviewe
    corecore