181 research outputs found

    Effect of Denosumab on Femoral Periprosthetic BMD and Early Femoral Stem Subsidence in Postmenopausal Women Undergoing Cementless Total Hip Arthroplasty

    Get PDF
    Antiresorptive denosumab is known to improve the quality and strength of cortical bone in the proximal femurs of osteoporotic women, but its efficacy in preventing periprosthetic bone loss and reducing femoral stem migration has not been studied in women undergoing cementless total hip arthroplasty. We conducted a single‐center, randomized, double‐blinded, placebo‐controlled trial of 65 postmenopausal women with primary hip osteoarthritis and Dorr type A or B proximal femur anatomy. The patients randomly received subcutaneous injections of denosumab 60 mg or placebo once every 6 months for 12 months, starting 1 month before surgery. The primary endpoint was the change in bone mineral density (BMD) of the proximal femur (Gruen zone 7) at week 48, and the secondary endpoint was stem subsidence measured by radiostereometric analysis (RSA) at week 48. Exploratory endpoints included changes in BMDs of the contralateral hip, lumbar spine and distal radius, serum levels of bone turnover markers, walking speed, walking activity, patient‐reported outcome measures, and radiographic assessment of stem osseointegration. The participants underwent vertebral‐fracture assessment in an extension safety study at 3 years. Denosumab significantly decreased bone loss in the medial femoral neck (zone 7) and increased periprosthetic BMD in the greater trochanteric region (zone 1) and lesser trochanteric region (zone 6). Denosumab did not reduce temporary femoral stem migration. The migration occurred mainly during the settling period (0 to 12 weeks) after implantation of the prosthesis. All of the stems osseointegrated, as evaluated by RSA and radiographs. There were no intergroup differences in functional recovery. Discontinuation of denosumab did not lead to any adverse events. In conclusion, denosumab increased periprosthetic BMD in the clinically relevant regions of the proximal femur, but the treatment response was not associated with any reduction of initial stem migration.

    Genetic evolution of invasive emm28 Streptococcus pyogenes strains and significant association with puerperal infections in young women in Finland

    Get PDF
    Objectives: Streptococcus pyogenes or group A streptococcus (GAS) is a human specific pathogen that annually infects over 700 million individuals. GAS strains of type emm28 are an abundant cause of invasive infections in Europe and North America.Methods: We conducted a population-based study on bacteraemic emm28 GAS cases in Finland, from 1995 to 2015. Whole-genome sequencing (WGS) was used to genetically characterize the bacterial isolates. Bayesian analysis of the population structure was used to define genetic clades. Register-linkage analysis was performed to test for association of emm28 GAS with delivery- or postpartum-related infections. A genome-wide association study was used to search for DNA sequences associated with delivery or puerperal infections.Results: Among 3060 bacteraemic cases reported during the study period, 714 were caused by emm28. Women comprised a majority of cases (59 %, 422/714), and were significantly over-represented (84.4 %, 162/192, p Conclusions: Women of childbearing age were significantly overrepresented among bacteraemic emm28 GAS cases, and in particular were strongly associated with delivery and puerperium cases over the 21 years studied. The molecular mechanisms behind these associations are unclear and warrant further investigation.</p

    Prevalence of pneumococcal nasopharyngeal colonization and serotypes circulating in Cameroonian children after the 13-valent pneumococcal conjugate vaccine introduction

    Get PDF
    BackgroundStreptococcus pneumoniae remains a major contributor to childhood infections and deaths globally. In Cameroon, the 13-valent pneumococcal conjugate vaccine (PCV13) was introduced in July 2011, using a 3-dose Expanded programme on immunization (EPI) schedule administered to infants at 6, 10 and 14 weeks of age. To evaluate PCV13 effects, we assessed pneumococcal nasopharyngeal colonization and serotype distribution among Cameroonian children after PCV13 introduction.MethodsNasopharyngeal (NP) swabs were collected from eligible children aged 24–36 months in two cross-sectional surveys conducted from March to July: in 2013 (PCV13-unvaccinated), and in 2015 (PCV13-vaccinated). Using a systematic World Health Organization (WHO) cluster coverage sampling technique in 40 communities, NP swabs collected were processed following WHO recommendations. Standard bacterial culture techniques were used for the isolation of S. pneumoniae from gentamicin-blood agar plates and identification using optochin susceptibility testing. Serotyping was performed using sequential multiplex polymerase chain reaction, supplemented with Quellung test.ResultsAmong the PCV13-vaccinated children, overall pneumococcal carriage prevalence was 61.8% (426/689) and PCV13 vaccine-type carriage prevalence was 18.0% (123/689). Eleven out of the 13 vaccine serotypes were detected in the vaccinated children. The most common serotypes were 19F (4.5%, 31/689) and 15B/C (7.3%, 50/689).ConclusionIn Cameroon, four years after infant vaccination nearly all of the PCV13-serotypes continued to circulate in the population. This suggests that the direct and indirect effects of the vaccination programme have not resulted in expected low levels of vaccine-type transmission. Continuous monitoring is needed to assess the long term effects of the PCV13 on nasopharyngeal carriage and disease.</div

    Assessment of resolution and intercenter reproducibility of results of genotyping Staphylococcus aureus by pulsed-field gel electrophoresis of SmaI macrorestriction fragments: a multicenter study

    Get PDF
    Twenty well-characterized isolates of methicillin-resistant Staphylococcus aureus were used to study the optimal resolution and interlaboratory reproducibility of pulsed-field gel electrophoresis (PFGE) of DNA macrorestriction fragments. Five identical isolates (one PFGE type), 5 isolates that produced related PFGE subtypes, and 10 isolates with unique PFGE patterns were analyzed blindly in 12 different laboratories by in-house protocols. In several laboratories a standardized PFGE protocol with a commercial kit was applied successfully as well. Eight of the centers correctly identified the genetic homogeneity of the identical isolates by both the in-house and standard protocols. Four of 12 laboratories failed to produce interpretable data by the standardized protocol, due to technical problems (primarily plug preparation). With the five rel

    Transcriptome Remodeling Contributes to Epidemic Disease Caused by the Human Pathogen Streptococcus pyogenes

    Get PDF
    For over a century, a fundamental objective in infection biology research has been to understand the molecular processes contributing to the origin and perpetuation of epidemics. Divergent hypotheses have emerged concerning the extent to which environmental events or pathogen evolution dominates in these processes. Remarkably few studies bear on this important issue. Based on population pathogenomic analysis of 1,200 Streptococcus pyogenes type emm89 infection isolates, we report that a series of horizontal gene transfer events produced a new pathogenic genotype with increased ability to cause infection, leading to an epidemic wave of disease on at least two continents. In the aggregate, these and other genetic changes substantially remodeled the transcriptomes of the evolved progeny, causing extensive differential expression of virulence genes and altered pathogen-host interaction, including enhanced immune evasion. Our findings delineate the precise molecular genetic changes that occurred and enhance our understanding of the evolutionary processes that contribute to the emergence and persistence of epidemically successful pathogen clones. The data have significant implications for understanding bacterial epidemics and for translational research efforts to blunt their detrimental effects. IMPORTANCE The confluence of studies of molecular events underlying pathogen strain emergence, evolutionary genetic processes mediating altered virulence, and epidemics is in its infancy. Although understanding these events is necessary to develop new or improved strategies to protect health, surprisingly few studies have addressed this issue, in particular, at the comprehensive population genomic level. Herein we establish that substantial remodeling of the transcriptome of the human-specific pathogen Streptococcus pyogenes by horizontal gene flow and other evolutionary genetic changes is a central factor in precipitating and perpetuating epidemic disease. The data unambiguously show that the key outcome of these molecular events is evolution of a new, more virulent pathogenic genotype. Our findings provide new understanding of epidemic disease.Peer reviewe

    Evolutionary pathway to increased virulence and epidemic group A Streptococcus disease derived from 3,615 genome sequences.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked Files. This article is open access.We sequenced the genomes of 3,615 strains of serotype Emm protein 1 (M1) group A Streptococcus to unravel the nature and timing of molecular events contributing to the emergence, dissemination, and genetic diversification of an unusually virulent clone that now causes epidemic human infections worldwide. We discovered that the contemporary epidemic clone emerged in stepwise fashion from a precursor cell that first contained the phage encoding an extracellular DNase virulence factor (streptococcal DNase D2, SdaD2) and subsequently acquired the phage encoding the SpeA1 variant of the streptococcal pyrogenic exotoxin A superantigen. The SpeA2 toxin variant evolved from SpeA1 by a single-nucleotide change in the M1 progenitor strain before acquisition by horizontal gene transfer of a large chromosomal region encoding secreted toxins NAD(+)-glycohydrolase and streptolysin O. Acquisition of this 36-kb region in the early 1980s into just one cell containing the phage-encoded sdaD2 and speA2 genes was the final major molecular event preceding the emergence and rapid intercontinental spread of the contemporary epidemic clone. Thus, we resolve a decades-old controversy about the type and sequence of genomic alterations that produced this explosive epidemic. Analysis of comprehensive, population-based contemporary invasive strains from seven countries identified strong patterns of temporal population structure. Compared with a preepidemic reference strain, the contemporary clone is significantly more virulent in nonhuman primate models of pharyngitis and necrotizing fasciitis. A key finding is that the molecular evolutionary events transpiring in just one bacterial cell ultimately have produced millions of human infections worldwide.Knut and Alice Wallenberg Foundation Swedish Research Council Houston Methodist Hospital Fondren Foundatio

    An outbreak of Streptococcus equi subspecies zooepidemicus associated with consumption of fresh goat cheese

    Get PDF
    BACKGROUND: Streptococcus equi subspecies zooepidemicus is a rare infection in humans associated with contact with horses or consumption of unpasteurized milk products. On October 23, 2003, the National Public Health Institute was alerted that within one week three persons had been admitted to Tampere University Central Hospital (TaYS) because of S. equi subsp. zooepidemicus septicaemia. All had consumed fresh goat cheese produced in a small-scale dairy located on a farm. We conducted an investigation to determine the source and the extent of the outbreak. METHODS: Cases were identified from the National Infectious Disease Register. Cases were persons with S. equi subsp. zooepidemicus isolated from a normally sterile site who had illness onset 15.9-31.10.2003. All cases were telephone interviewed by using a standard questionnaire and clinical information was extracted from patient charts. Environmental and food specimens included throat swabs from two persons working in the dairy, milk from goats and raw milk tank, cheeses made of unpasteurized milk, vaginal samples of goats, and borehole well water. The isolates were characterized by ribotyping and pulsed-field gel electrophoresis (PFGE). RESULTS: Seven persons met the case definition; six had septicaemia and one had purulent arthritis. Five were women; the median age was 70 years (range 54–93). None of the cases were immunocompromized and none died. Six cases were identified in TaYS, and one in another university hospital in southern Finland. All had eaten goat cheese produced on the implicated farm. S. equi subsp. zooepidemicus was isolated from throat swabs, fresh goat cheese, milk tank, and vaginal samples of one goat. All human and environmental strains were indistinguishable by ribotyping and PFGE. CONCLUSION: The outbreak was caused by goat cheese produced from unpasteurized milk. Outbreaks caused by S. equi subsp. zooepidemicus may not be detected if streptococcal strains are only typed to the group level. S. equi subsp. zooepidemicus may be a re-emerging disease if unpasteurized milk is increasingly used for food production. Facilities using unpasteurized milk should be carefully monitored to prevent this type of outbreaks
    • 

    corecore