45 research outputs found

    Gene expression allelic imbalance in ovine brown adipose tissue impacts energy homeostasis

    Get PDF
    Heritable trait variation within a population of organisms is largely governed by DNA variations that impact gene transcription and protein function. Identifying genetic variants that affect complex functional traits is a primary aim of population genetics studies, especially in the context of human disease and agricultural production traits. The identification of alleles directly altering mRNA expression and thereby biological function is challenging due to difficulty in isolating direct effects of cis-acting genetic variations from indirect trans-acting genetic effects. Allele specific gene expression or allelic imbalance in gene expression (AI) occurring at heterozygous loci provides an opportunity to identify genes directly impacted by cis-acting genetic variants as indirect trans-acting effects equally impact the expression of both alleles. However, the identification of genes showing AI in the context of the expression of all genes remains a challenge due to a variety of technical and statistical issues. The current study focuses on the discovery of genes showing AI using single nucleotide polymorphisms as allelic reporters. By developing a computational and statistical process that addressed multiple analytical challenges, we ranked 5,809 genes for evidence of AI using RNA-Seq data derived from brown adipose tissue samples from a cohort of late gestation fetal lambs and then identified a conservative subgroup of 1,293 genes. Thus, AI was extensive, representing approximately 25% of the tested genes. Genes associated with AI were enriched for multiple Gene Ontology (GO) terms relating to lipid metabolism, mitochondrial function and the extracellular matrix. These functions suggest that cis-acting genetic variations causing AI in the population are preferentially impacting genes involved in energy homeostasis and tissue remodelling. These functions may contribute to production traits likely to be under genetic selection in the population.Shila Ghazanfar, Tony Vuocolo, Janna L. Morrison, Lisa M. Nicholas, Isabella C. McMillen, Jean Y. H. Yang, ... et al

    Genetic architecture of gene expression in ovine skeletal muscle

    Get PDF
    In livestock populations the genetic contribution to muscling is intensively monitored in the progeny of industry sires and used as a tool in selective breeding programs. The genes and pathways conferring this genetic merit are largely undefined. Genetic variation within a population has potential, amongst other mechanisms, to alter gene expression via cis- or trans-acting mechanisms in a manner that impacts the functional activities of specific pathways that contribute to muscling traits. By integrating sire-based genetic merit information for a muscling trait with progeny-based gene expression data we directly tested the hypothesis that there is genetic structure in the gene expression program in ovine skeletal muscle. Results The genetic performance of six sires for a well defined muscling trait, longissimus lumborum muscle depth, was measured using extensive progeny testing and expressed as an Estimated Breeding Value by comparison with contemporary sires. Microarray gene expression data were obtained for longissimus lumborum samples taken from forty progeny of the six sires (4-8 progeny/sire). Initial unsupervised hierarchical clustering analysis revealed strong genetic architecture to the gene expression data, which also discriminated the sire-based Estimated Breeding Value for the trait. An integrated systems biology approach was then used to identify the major functional pathways contributing to the genetics of enhanced muscling by using both Estimated Breeding Value weighted gene co-expression network analysis and a differential gene co-expression network analysis. The modules of genes revealed by these analyses were enriched for a number of functional terms summarised as muscle sarcomere organisation and development, protein catabolism (proteosome), RNA processing, mitochondrial function and transcriptional regulation. Conclusions This study has revealed strong genetic structure in the gene expression program within ovine longissimus lumborum muscle. The balance between muscle protein synthesis, at the levels of both transcription and translation control, and protein catabolism mediated by regulated proteolysis is likely to be the primary determinant of the genetic merit for the muscling trait in this sheep population. There is also evidence that high genetic merit for muscling is associated with a fibre type shift toward fast glycolytic fibres. This study provides insight into mechanisms, presumably subject to strong artificial selection, that underpin enhanced muscling in sheep populations

    Bovine proteins containing poly-glutamine repeats are often polymorphic and enriched for components of transcriptional regulatory complexes

    Get PDF
    peer-reviewedBackground: About forty human diseases are caused by repeat instability mutations. A distinct subset of these diseases is the result of extreme expansions of polymorphic trinucleotide repeats; typically CAG repeats encoding poly-glutamine (poly-Q) tracts in proteins. Polymorphic repeat length variation is also apparent in human poly-Q encoding genes from normal individuals. As these coding sequence repeats are subject to selection in mammals, it has been suggested that normal variations in some of these typically highly conserved genes are implicated in morphological differences between species and phenotypic variations within species. At present, poly-Q encoding genes in non-human mammalian species are poorly documented, as are their functions and propensities for polymorphic variation. Results: The current investigation identified 178 bovine poly-Q encoding genes (Q ≥ 5) and within this group, 26 genes with orthologs in both human and mouse that did not contain poly-Q repeats. The bovine poly-Q encoding genes typically had ubiquitous expression patterns although there was bias towards expression in epithelia, brain and testes. They were also characterised by unusually large sizes. Analysis of gene ontology terms revealed that the encoded proteins were strongly enriched for functions associated with transcriptional regulation and many contributed to physical interaction networks in the nucleus where they presumably act cooperatively in transcriptional regulatory complexes. In addition, the coding sequence CAG repeats in some bovine genes impacted mRNA splicing thereby generating unusual transcriptional diversity, which in at least one instance was tissue-specific. The poly-Q encoding genes were prioritised using multiple criteria for their likelihood of being polymorphic and then the highest ranking group was experimentally tested for polymorphic variation within a cattle diversity panel. Extensive and meiotically stable variation was identified. Conclusions: Transcriptional diversity can potentially be generated in poly-Q encoding genes by the impact of CAG repeat tracts on mRNA alternative splicing. This effect, combined with the physical interactions of the encoded proteins in large transcriptional regulatory complexes suggests that polymorphic variations of proteins in these complexes have strong potential to affect phenotype.Dairy Australia (through the Innovative Dairy Cooperative Research Center

    Dlk1 Is Necessary for Proper Skeletal Muscle Development and Regeneration

    Get PDF
    Delta-like 1homolog (Dlk1) is an imprinted gene encoding a transmembrane protein whose increased expression has been associated with muscle hypertrophy in animal models. However, the mechanisms by which Dlk1 regulates skeletal muscle plasticity remain unknown. Here we combine conditional gene knockout and over-expression analyses to investigate the role of Dlk1 in mouse muscle development, regeneration and myogenic stem cells (satellite cells). Genetic ablation of Dlk1 in the myogenic lineage resulted in reduced body weight and skeletal muscle mass due to reductions in myofiber numbers and myosin heavy chain IIB gene expression. In addition, muscle-specific Dlk1 ablation led to postnatal growth retardation and impaired muscle regeneration, associated with augmented myogenic inhibitory signaling mediated by NF-κB and inflammatory cytokines. To examine the role of Dlk1 in satellite cells, we analyzed the proliferation, self-renewal and differentiation of satellite cells cultured on their native host myofibers. We showed that ablation of Dlk1 inhibits the expression of the myogenic regulatory transcription factor MyoD, and facilitated the self-renewal of activated satellite cells. Conversely, Dlk1 over-expression inhibited the proliferation and enhanced differentiation of cultured myoblasts. As Dlk1 is expressed at low levels in satellite cells but its expression rapidly increases upon myogenic differentiation in vitro and in regenerating muscles in vivo, our results suggest a model in which Dlk1 expressed by nascent or regenerating myofibers non-cell autonomously promotes the differentiation of their neighbor satellite cells and therefore leads to muscle hypertrophy

    Histological and transcriptome-wide level characteristics of fetal myofiber hyperplasia during the second half of gestation in Texel and Ujumqin sheep

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Whether myofibers increase with a pulsed-wave mode at particular developmental stages or whether they augment evenly across developmental stages in large mammals is unclear. Additionally, the molecular mechanisms of myostatin in myofiber hyperplasia at the fetal stage in sheep remain unknown. Using the first specialized transcriptome-wide sheep oligo DNA microarray and histological methods, we investigated the gene expression profile and histological characteristics of developing fetal ovine longissimus muscle in Texel sheep (high muscle and low fat), as a myostatin model of natural mutation, and Ujumqin sheep (low muscle and high fat). Fetal skeletal muscles were sampled at 70, 85, 100, 120, and 135 d of gestation.</p> <p>Results</p> <p>Myofiber number increased sharply with a pulsed-wave mode at certain developmental stages but was not augmented evenly across developmental stages in fetal sheep. The surges in myofiber hyperplasia occurred at 85 and 120 d in Texel sheep, whereas a unique proliferative surge appeared at 100 d in Ujumqin sheep. Analysis of the microarray demonstrated that immune and hematological systems' development and function, lipid metabolism, and cell communication were the biological functions that were most differentially expressed between Texel and Ujumqin sheep during muscle development. Pathways associated with myogenesis and the proliferation of myoblasts, such as calcium signaling, chemokine (C-X-C motif) receptor 4 signaling, and vascular endothelial growth factor signaling, were affected significantly at specific fetal stages, which underpinned fetal myofiber hyperplasia and postnatal muscle hypertrophy. Moreover, we identified some differentially expressed genes between the two breeds that could be potential myostatin targets for further investigation.</p> <p>Conclusions</p> <p>Proliferation of myofibers proceeded in a pulsed-wave mode at particular fetal stages in the sheep. The myostatin mutation changed the gene expression pattern in skeletal muscle at a transcriptome-wide level, resulting in variation in myofiber phenotype between Texel and Ujumqin sheep during the second half of gestation. Our findings provide a novel and dynamic description of the effect of myostatin on skeletal muscle development, which contributes to understanding the biology of muscle development in large mammals.</p

    Differential expression of Dlk-1 in bovine adipose tissue depots

    No full text
    Dlk-1, a type 1 membrane glycoprotein, is a member of the Epidermal Growth Factor-like family of homeotic proteins that are typically involved in cell fate decisions and in mice it has been implicated in the control of differentiation of adipocytes. The aim of this study was to determine whether there were tissue-specific expression patterns of Dlk-1 splice variants in bovine tissues. Only the Dlk-1-C2 variant was expressed in adult bovine tissues while both Dlk-1-C2 and Dlk-1-A variants were expressed in foetal tissues. Quantitative real-time PCR revealed large differences in the relative levels of expression of the Dlk-1-C2 variant in adult adipose tissue depots with no expression in subcutaneous and brisket adipose tissues. Expression was also demonstrated in three adult skeletal muscle samples. The large variation in the level of expression of Dlk-1-C2 in different adult tissues may reflect the relative preadipocyte content of those tissues and consequently their potential for generating new adipocytes. A low abundance soluble glycoprotein (bFA1) was purified from bovine amniotic fluid. Analyses of its amino acid sequence revealed that it corresponded to most of the extracellular domain of bovine Dlk-1 and was derived by proteolytic processing from the full-length Dlk-1 protein encoded by the Dlk-1-A variant. The tissues expressing the Dlk-1-A variant have not been identified but are likely to be foetal in origin. Splice variants of Dlk-1 may have varied functional roles with the foetal Dlk-1-A form capable of generating a protein that undergoes proteolytic processing to release a soluble ecto-domain of Dlk-1. In contrast the Dlk-1-C2 splice variant codes for a protein lacking this processing site and therefore it probably remains bound to the cell membrane

    Insect chitin synthase. cDNA sequence, gene organization and expression

    No full text
    Chitin is a major component of the cuticle of arthropods. However, the synthesis of chitin is poorly understood. Feeding larvae of the insect Lucilia cuprina on the fungal chitin synthase competitive inhibitor, nikkomycin Z resulted in strong concentration-dependent mortality of the larvae (LD50 = 280 nM). This result demonstrates that chitin is an essential component of this insect. The complete cDNA and deduced amino-acid sequences of the first arthropod chitin synthase-like protein, LcCS-1, from the larvae of the insect L. cuprina have been determined. The cDNA sequence is 5757 bp in length and codes for a large complex protein containing 1592 amino acids (Mr = 180 717). Analysis of the whole protein sequence reveals low, but significant, similarity to yeast chitin synthases with stronger areas of conservation centred on local regions implicated in the active sites of the yeast enzymes. Strikingly, LcCS-1 contains 15-18 potential transmembrane segments, indicating that the protein is an integral membrane protein. Two alternative topographical models of LcCS-1 are described, which involve its association with either the plasma membrane or the membrane of intracellular vesicles. LcCS-1 mRNA is produced in all life stages of the insect with expression in the larval stage limited to the integument and trachea. In a third instar larva the mRNA was localized to a single layer of epidermal cells immediately underlying the procuticle region of the integument. cDNA or genomic sequences that are highly related to fragments of LcCS-1 were demonstrated in three insect orders, one arachnid and Caenorhabditis elegans, thereby attesting to the importance of this enzyme in these chitin-producing organisms. Bioinformatics has been used to deduce the gene sequence and organization of the highly homologous Drosophila melanogaster orthologue of LcCS-1, DmCS-1

    Placental restriction of fetal growth decreases IGF1 and leptin mRNA expression in the perirenal adipose tissue of late gestation fetal sheep

    No full text
    Placental restriction (PR) of fetal growth results in a low birth weight and an increased visceral fat mass in postnatal life. We investigated whether PR alters expression of genes that regulate adipogenesis [IGF1, IGF1 receptor (IGF1R), IGF2, IGF2R, proliferator-activated receptor-, retinoid-X-receptor-], adipocyte metabolism (lipoprotein lipase, G3PDH, GAPDH) and adipokine signaling (leptin, adiponectin) in visceral adipose tissue before birth. PR was induced by removal of the majority of endometrial caruncles in nonpregnant ewes before mating. Fetal blood samples were collected from 116 days gestation, and perirenal visceral adipose tissue (PAT) was collected from PR and control fetuses at 145 days. PAT gene expression was measured by quantitative RT-PCR. PR fetuses had a lower weight (PR 2.90 ± 0.32 kg; control, 5.12 ± 0.24 kg; P < 0.0001), mean gestational arterial PO2 (P < 0.0001), plasma glucose (P < 0.01), and insulin concentrations (P < 0.02), than controls. The expression of IGF1 mRNA in PAT was lower in the PR fetuses (PR, 0.332 ± 0.063; control, 0.741 ± 0.083; P < 0.01). Leptin mRNA expression in PAT was also lower in PR fetuses (PR, 0.077 ± 0.009; control, 0.115 ± 0.013; P < 0.05), although there was no difference in the expression of other adipokine or adipogenic genes in PAT between PR and control fetuses. Thus, restriction of placental and hence, fetal substrate supply results in decreased IGF1 and leptin expression in fetal visceral adipose tissue, which may alter the functional development of the perirenal fat depot and contribute to altered leptin signaling in the growth-restricted newborn and the subsequent emergence of an increased visceral adiposity.Jaime A. Duffield, Tony Vuocolo, Ross Tellam, Bernard S. Yuen, Beverly S. Muhlhausler and I. Caroline McMille
    corecore