217 research outputs found

    Mapping the spatial distribution of star formation in cluster galaxies at z ~ 0.5 with the Grism Lens-Amplified Survey from Space (GLASS)

    Get PDF
    We present the first study of the spatial distribution of star formation in z ~ 0.5 cluster galaxies. The analysis is based on data taken with the Wide Field Camera 3 as part of the Grism Lens-Amplified Survey from Space (GLASS). We illustrate the methodology by focusing on two clusters (MACS0717.5+3745 and MACS1423.8+2404) with different morphologies (one relaxed and one merging) and use foreground and background galaxies as field control sample. The cluster+field sample consists of 42 galaxies with stellar masses in the range 108-1011 M ☉, and star formation rates in the range 1-20 M☉ yr -1. In both environments, Hα is more extended than the rest-frame UV continuum in 60% of the cases, consistent with diffuse star formation and inside out growth. The Hα emission appears more extended in cluster galaxies than in the field, pointing perhaps to ionized gas being stripped and/or star formation being enhanced at large radii. The peak of the Hα emission and that of the continuum are offset by less than 1 kpc. We investigate trends with the hot gas density as traced by the X-ray emission, and with the surface mass density as inferred from gravitational lens models and find no conclusive results. The diversity of morphologies and sizes observed in Hα illustrates the complexity of the environmental process that regulate star formation

    GASP IV: A muse view of extreme ram-pressure stripping in the plane of the sky: the case of jellyfish galaxy JO204

    Get PDF
    In the context of the GAs Stripping Phenomena in galaxies with Muse (GASP) survey, we present the characterization of JO204, a jellyfish galaxy in A957, a relatively low-mass cluster with M=4.4×1014M⊙M=4.4 \times10^{14}M_\odot. This galaxy shows a tail of ionized gas that extends up to 30 kpc from the main body in the opposite direction of the cluster center. No gas emission is detected in the galaxy outer disk, suggesting that gas stripping is proceeding outside-in. The stellar component is distributed as a regular disk galaxy; the stellar kinematics shows a symmetric rotation curve with a maximum radial velocity of 200km/s out to 20 kpc from the galaxy center. The radial velocity of the gas component in the central part of the disk follows the distribution of the stellar component; the gas kinematics in the tail retains the rotation of the galaxy disk, indicating that JO204 is moving at high speed in the intracluster medium. Both the emission and radial velocity maps of the gas and stellar components indicate ram-pressure as the most likely primary mechanism for gas stripping, as expected given that JO204 is close to the cluster center and it is likely at the first infall in the cluster. The spatially resolved star formation history of JO204 provides evidence that the onset of ram-pressure stripping occurred in the last 500 Myr, quenching the star formation activity in the outer disk, where the gas has been already completely stripped. Our conclusions are supported by a set of hydrodynamic simulations.Comment: accepted for publication in Ap

    Characterization and modeling of contamination for Lyman break galaxy samples at high redshift

    Get PDF
    The selection of high redshift sources from broad-band photometry using the Lyman-break galaxy (LBG) technique is a well established methodology, but the characterization of its contamination for the faintest sources is still incomplete. We use the optical and near-IR data from four (ultra)deep Hubble Space Telescope legacy fields to investigate the contamination fraction of LBG samples at z~5-8 selected using a colour-colour method. Our approach is based on characterizing the number count distribution of interloper sources, that is galaxies with colors similar to those of LBGs, but showing detection at wavelengths shorter than the spectral break. Without sufficient sensitivity at bluer wavelengths, a subset of interlopers may not be properly classified, and contaminate the LBG selection. The surface density of interlopers in the sky gets steeper with increasing redshift of LBG selections. Since the intrinsic number of dropouts decreases significantly with increasing redshift, this implies increasing contamination from misclassified interlopers with increasing redshift, primarily by intermediate redshift sources with unremarkable properties (intermediate ages, lack of ongoing star formation and low/moderate dust content). Using Monte Carlo simulations, we estimate that the CANDELS deep data have contamination induced by photometric scatter increasing from ~2% at z~5 to ~6% at z~8 for a typical dropout color >1 mag, with contamination naturally decreasing for a more stringent dropout selection. Contaminants are expected to be located preferentially near the detection limit of surveys, ranging from 0.1 to 0.4 contaminants per arcmin2 at J=30, depending on the field considered. This analysis suggests that the impact of contamination in future studies of z>10 galaxies needs to be carefully considered.Comment: 17 pages, 13 figures, ApJ in pres

    From blue star-forming to red passive: galaxies in transition in different environments

    Get PDF
    Exploiting a mass complete (M_*>10^(10.25)M_sun) sample at 0.03<z<0.11 drawn from the Padova Millennium Galaxy Group Catalog (PM2GC), we use the (U-B)_rf color and morphologies to characterize galaxies, in particular those that show signs of an ongoing or recent transformation of their star formation activity and/or morphology - green galaxies, red passive late types, and blue star-forming early types. Color fractions depend on mass and only for M_*<10^(10.7)M_sun on environment. The incidence of red galaxies increases with increasing mass, and, for M_*<10^(10.7)M_sun, decreases toward the group outskirts and in binary and single galaxies. The relative abundance of green and blue galaxies is independent of environment, and increases monotonically with galaxy mass. We also inspect galaxy structural parameters, star-formation properties, histories and ages and propose an evolutionary scenario for the different subpopulations. Color transformations are due to a reduction and suppression of SFR in both bulges and disks which does not noticeably affect galaxy structure. Morphological transitions are linked to an enhanced bulge-to-disk ratio due to the removal of the disk, not to an increase of the bulge. Our modeling suggests that green colors might be due to star formation histories declining with long timescales, as an alternative scenario to the classical "quenching" processes. Our results suggest that galaxy transformations in star formation activity and morphology depend neither on environment nor on being a satellite or the most massive galaxy of a halo. The only environmental dependence we find is the higher fast quenching efficiency in groups giving origin to post-starburst signatures.Comment: 20 pages, 12 figures, accepted for publication in Ap

    The star formation history of galaxies: the role of galaxy mass, morphology and environment

    Get PDF
    We analyze the star formation history (SFH) of galaxies as a function of present-day environment, galaxy stellar mass and morphology. The SFH is derived by means of a non-parametric spectrophotometric model applied to individual galaxies at z ~ 0.04- 0.1 in the WINGS clusters and the PM2GC field. The field reconstructed evolution of the star formation rate density (SFRD) follows the values observed at each redshift (Madau & Dickinson 2014), except at z > 2 where our estimate is ~ 1.7x higher than the high-z observed value. The slope of the SFRD decline with time gets progressively steeper going from low mass to high mass haloes. The decrease of the SFRD since z = 2 is due to 1) quenching - 50% of the SFRD in the field and 75% in clusters at z > 2 originated in galaxies that are passive today - and 2) the fact that the average SFR of today's star-forming galaxies has decreased with time. We quantify the contribution to the SFRD(z) of galaxies of today's different masses and morphologies. The current morphology correlates with the current star formation activity but is irrelevant for the past stellar history. The average SFH depends on galaxy mass, but galaxies of a given mass have different histories depending on their environment. We conclude that the variation of the SFRD(z) with environment is not driven by different distributions of galaxy masses and morphologies in clusters and field, and must be due to an accelerated formation in high mass haloes compared to low mass ones even for galaxies that will end up having the same galaxy mass today.Comment: 16 pages, 10 figures. Published on MNRA
    • …
    corecore