16 research outputs found

    Méthode de construction d’une offre d’effacement électrique basée sur les technologies gaz naturel : Application - micro-cogénération et chaudière hybride

    No full text
    This PhD thesis addresses two issues: Firstly, the assessment of Demand Side Management (DSM) opportunity of gas and electricity technologies in dwellings, and secondly, the integration of their valuations in infrastructure planning schemes.This work originaites from a context of the growth of electricity peaks (which increased risk of system failure) and the natural gas consumption decrease which leads to an under-utilization of the gas distribution network.This manuscript focuses on the integration of gas technologies as DSM solution to contribute to the planning of electricity grid. Indeed, relieving the electricity consumption during constrained periods by diffusing micro-cogeneration or hybrid boiler, is an actual alternative to network reinforcement solutions. To quantify the load shedding capacity, we are interested in the marginal impact of demand systems on the amount of Energy Not Supplied potential. Estimating systems' impacts on heating demand is a prerequisite to this approach. So we model the regional heating load curves by a Bottom-Up approach to simulate marginal demand profiles depending on heating systems. The implementation of this method requires socio-technico-economic studies to reduce uncertainty of the determinants of heating needs. A load calibration methodology has been proposed but has not been performed. However, we make a contribution to the analysis of aggregated load curves emphasizing that the load model currently used by network operator similar to a simplified building model.La thèse répond à deux problématiques, d'une part la quantification des effacements de consommation d'électricité par technologies gaz dans l'habitat et d'autre part de l'intégration de leurs valorisations dans une perspective de planification des infrastructures. Ces travaux se justifient dans un contexte d'augmentation de la pointe électrique, à l'origine d'une hausse du risque de défaillance du système, et de la baisse des consommations de gaz naturel conduisant à une sous utilisation du réseau de distribution. Pourtant, alors que la demande en gaz naturel croît du fait de l'installation de centrales à cycle combiné sur le réseau de transport, l'interaction des réseaux de distribution gaz/électricité n'est pas exploitée.Ce manuscrit envisage l'intégration des technologies gaz comme moyen de Maîtrise de la Demande en Électricité dans le processus de planification des réseaux. Ainsi les effacements de consommations d'électricité lors des périodes dimensionnantes par des micro-cogénérateurs ou des chaudières hybrides sont des solutions alternatives aux solutions de renforcement de réseaux.Pour quantifier le gisement d'effacement, nous nous intéressons à l'impact marginal des systèmes sur la demande en termes de modification de la quantité d'Énergie Non Distribuée potentielle. Les estimations des impacts de systèmes de chauffage sur la demande sont donc des prérequis à cette approche. Nous modélisons les courbes de charge régionales par une approche Bottom-Up permettant de déterminer les profils de demande marginale de chauffage en fonction des systèmes. La mise en application de cette méthode est à fiabiliser par des études socio-technico-économiques permettant de réduire les incertitudes sur les déterminants des besoins de chauffage. Une calibration en puissance des profils générés a été proposée mais n'a pu être réalisée. En revanche, nous apportons une contribution à l'analyse des courbes de charge agrégées en montrant que le modèle d'estimation actuellement utilisé par le gestionnaire de réseau s'apparente à un modèle simplifié de bâtimen

    Development methodology of electricity demand side management scheme with natural gas technologies

    No full text
    La thèse répond à deux problématiques, d'une part la quantification des effacements de consommation d'électricité par technologies gaz dans l'habitat et d'autre part de l'intégration de leurs valorisations dans une perspective de planification des infrastructures. Ces travaux se justifient dans un contexte d'augmentation de la pointe électrique, à l'origine d'une hausse du risque de défaillance du système, et de la baisse des consommations de gaz naturel conduisant à une sous utilisation du réseau de distribution. Pourtant, alors que la demande en gaz naturel croît du fait de l'installation de centrales à cycle combiné sur le réseau de transport, l'interaction des réseaux de distribution gaz/électricité n'est pas exploitée.Ce manuscrit envisage l'intégration des technologies gaz comme moyen de Maîtrise de la Demande en Électricité dans le processus de planification des réseaux. Ainsi les effacements de consommations d'électricité lors des périodes dimensionnantes par des micro-cogénérateurs ou des chaudières hybrides sont des solutions alternatives aux solutions de renforcement de réseaux.Pour quantifier le gisement d'effacement, nous nous intéressons à l'impact marginal des systèmes sur la demande en termes de modification de la quantité d'Énergie Non Distribuée potentielle. Les estimations des impacts de systèmes de chauffage sur la demande sont donc des prérequis à cette approche. Nous modélisons les courbes de charge régionales par une approche Bottom-Up permettant de déterminer les profils de demande marginale de chauffage en fonction des systèmes. La mise en application de cette méthode est à fiabiliser par des études socio-technico-économiques permettant de réduire les incertitudes sur les déterminants des besoins de chauffage. Une calibration en puissance des profils générés a été proposée mais n'a pu être réalisée. En revanche, nous apportons une contribution à l'analyse des courbes de charge agrégées en montrant que le modèle d'estimation actuellement utilisé par le gestionnaire de réseau s'apparente à un modèle simplifié de bâtimentThis PhD thesis addresses two issues: Firstly, the assessment of Demand Side Management (DSM) opportunity of gas and electricity technologies in dwellings, and secondly, the integration of their valuations in infrastructure planning schemes.This work originaites from a context of the growth of electricity peaks (which increased risk of system failure) and the natural gas consumption decrease which leads to an under-utilization of the gas distribution network.This manuscript focuses on the integration of gas technologies as DSM solution to contribute to the planning of electricity grid. Indeed, relieving the electricity consumption during constrained periods by diffusing micro-cogeneration or hybrid boiler, is an actual alternative to network reinforcement solutions. To quantify the load shedding capacity, we are interested in the marginal impact of demand systems on the amount of Energy Not Supplied potential. Estimating systems' impacts on heating demand is a prerequisite to this approach. So we model the regional heating load curves by a Bottom-Up approach to simulate marginal demand profiles depending on heating systems. The implementation of this method requires socio-technico-economic studies to reduce uncertainty of the determinants of heating needs. A load calibration methodology has been proposed but has not been performed. However, we make a contribution to the analysis of aggregated load curves emphasizing that the load model currently used by network operator similar to a simplified building model

    Quelle est la place des services aux patients dans le nouveau modèle économique de la pharma ?

    No full text
    STRASBOURG ILLKIRCH-Pharmacie (672182101) / SudocSudocFranceF

    Small scale impact of gas technologies on electric load management - ÎĽCHP & hybrid heat pump

    No full text
    International audienceTo face winter electricity peaking issues the authors proposes an analysis of the potential of distributed gas technologies for demand side management. This impact has to be analysed at small scale before any large scale extrapolation. Bi-energy technologies (gas and electricity) are a path to transfer loads from one system to another. Indeed, the flexible gas infrastructure adapts to load while electricity demand variations cause risk of black-out. The impacts of two hybrid technologies are studied at transformer level with 1-min experimental load profiles of 40 dwellings equipped with micro Combined Heat and Power (ÎĽCHP) boilers over a year in France. An absolute peak load reduction by 17% at small scale is found. Different technology mixes are then simulated to assess the effect on local infrastructure. Finally a methodology for temperature dependence analysis of load is used to assess different potential benefits of gas technologies

    The Nice Grid project : Using Distributed Energy Resources to Reduce Power Demand through Advanced Network Management

    No full text
    International audienceIncreasing penetration of distributed generation on the distribution network demands for a more flexible and efficient utilization of distributed energy resources. The development and deployment of Smart Grids technologies and solutions may provide solutions for significant changes in distribution operation within the near future. The Nice Grid project aims at implementing and testing a distributed energy resource management system, supporting hierarchical operation and control for a microgrid with high concentration of photovoltaic generators. The paper focuses on one use case of Load Reduction for TSO, from dispersed resources such as controllable loads and electrical storage units, which can be scheduled and operated through intermediaries, i.e. commercial aggregators. The business process, the project geographical footprint, the various supported standards and the overall architecture of the system are detailed in the following sections, with a strong emphasis on the transaction mechanism that supports the coordination process. The issues and lessons from the first two years are also discussed
    corecore