640 research outputs found

    Toward a better understanding of the doping mechanism involved in Mo(tfd-COCF3)3_3)_3 doped PBDTTT-c

    Full text link
    In this study, we aim to improve our understanding of the doping mechanism involved in the polymer PBDTTT-c doped with(Mo(tfd-COCF3)3. We follow the evolution of the hole density with dopant concentration to highlight the limits of organic semiconductor doping. To enable the use of doping to enhance the performance of organic electronic devices, doping efficiency must be understood and improved. We report here a study using complementary optical and electrical characterization techniques, which sheds some light on the origin of this limited doping efficiency at high dopant concentration. Two doping mechanisms are considered, the direct charge transfer (DCT) and the charge transfer complex (CTC). We discuss the validity of the model involved as well as its impact on the doping efficiency.Comment: Accepted manuscript, J. Appl. Phy

    Pavlov's dog associative learning demonstrated on synaptic-like organic transistors

    Full text link
    In this letter, we present an original demonstration of an associative learning neural network inspired by the famous Pavlov's dogs experiment. A single nanoparticle organic memory field effect transistor (NOMFET) is used to implement each synapse. We show how the physical properties of this dynamic memristive device can be used to perform low power write operations for the learning and implement short-term association using temporal coding and spike timing dependent plasticity based learning. An electronic circuit was built to validate the proposed learning scheme with packaged devices, with good reproducibility despite the complex synaptic-like dynamic of the NOMFET in pulse regime

    Interface Dipole : Effects on Threshold Voltage and Mobility for both Amorphous and Poly-crystalline Organic Field Effect Transistors

    Full text link
    We report a detailed comparison on the role of a self-assembled monolayer (SAM) of dipolar molecules on the threshold voltage and charge carrier mobility of organic field-effect transistor (OFET) made of both amorphous and polycrystalline organic semiconductors. We show that the same relationship between the threshold voltage and the dipole-induced charges in the SAM holds when both types of devices are fabricated on strictly identical base substrates. Charge carrier mobilities, almost constant for amorphous OFET, are not affected by the dipole in the SAMs, while for polycrystalline OFET (pentacene) the large variation of charge carrier mobilities is related to change in the organic film structure (mostly grain size).Comment: Full paper and supporting informatio

    Electron transport through rectifying self-assembled monolayer diodes on silicon: Fermi level pinning at the molecule-metal interface

    Full text link
    We report the synthesis and characterization of molecular rectifying diodes on silicon using sequential grafting of self-assembled monolayers of alkyl chains bearing a pi group at their outer end (Si/sigma-pi/metal junctions). We investigate the structure-performance relationships of these molecular devices and we examine to what extent the nature of the pi end-group (change in the energy position of their molecular orbitals) drives the properties of these molecular diodes. For all the pi-groups investigated here, we observe rectification behavior. These results extend our preliminary work using phenyl and thiophene groups (S. Lenfant et al., Nano Letters 3, 741 (2003)).The experimental current-voltage curves are analyzed with a simple analytical model, from which we extract the energy position of the molecular orbital of the pi-group in resonance with the Fermi energy of the electrodes. We report the experimental studies of the band lineup in these silicon/alkyl-pi conjugated molecule/metal junctions. We conclude that Fermi level pinning at the pi-group/metal interface is mainly responsible for the observed absence of dependence of the rectification effect on the nature of the pi-groups, even though they were chosen to have significant variations in their electronic molecular orbitalsComment: To be published in J. Phys. Chem.

    Negative Differential Resistance, Memory and Reconfigurable Logic Functions based on Monolayer Devices derived from Gold Nanoparticles Functionalized with Electro-polymerizable Thiophene-EDOT Units

    Get PDF
    We report on hybrid memristive devices made of a network of gold nanoparticles (10 nm diameter) functionalized by tailored 3,4(ethylenedioxy)thiophene (TEDOT) molecules, deposited between two planar electrodes with nanometer and micrometer gaps (100 nm to 10 um apart), and electropolymerized in situ to form a monolayer film of conjugated polymer with embedded gold nanoparticles (AuNPs). Electrical properties of these films exhibit two interesting behaviors: (i) a NDR (negative differential resistance) behavior with a peak/valley ratio up to 17, and (ii) a memory behavior with an ON/OFF current ratio of about 1E3 to 1E4. A careful study of the switching dynamics and programming voltage window is conducted demonstrating a non-volatile memory. The data retention of the ON and OFF states is stable (tested up to 24h), well controlled by the voltage and preserved when repeating the switching cycles (800 in this study). We demonstrate reconfigurable Boolean functions in multiterminal connected NP molecule devices.Comment: Full manuscript, figures and supporting information, J. Phys. Chem. C, on line, asap (2017

    Physical Study by Surface Characterizations of Sarin Sensor on the Basis of Chemically Functionalized Silicon Nanoribbon Field Effect Transistor

    Full text link
    Surface characterizations of an organophosphorus (OP) gas detector based on chemically functionalized silicon nanoribbon field-effect transistor (SiNR-FET) were performed by Kelvin Probe Force Microscopy (KPFM) and ToF-SIMS, and correlated with changes in the current-voltage characteristics of the devices. KPFM measurements on FETs allow (i) to investigate the contact potential difference (CPD) distribution of the polarized device as function of the gate voltage and the exposure to OP traces and, (ii) to analyze the CPD hysteresis associated to the presence of mobile ions on the surface. The CPD measured by KPFM on the silicon nanoribbon was corrected due to side capacitance effects in order to determine the real quantitative surface potential. Comparison with macroscopic Kelvin probe (KP) experiments on larger surfaces was carried out. These two approaches were quantitatively consistent. An important increase of the CPD values (between + 399 mV and + 302 mV) was observed after the OP sensor grafting, corresponding to a decrease of the work function, and a weaker variation after exposure to OP (between - 14 mV and - 61 mV) was measured. Molecular imaging by ToF-SIMS revealed OP presence after SiNR-FET exposure. The OP molecules were essentially localized on the Si-NR confirming effectiveness and selectivity of the OP sensor. A prototype was exposed to Sarin vapors and succeeded in the detection of low vapor concentrations (40 ppm).Comment: Paper and supporting information, J. Phys. Chem. C, 201
    • …
    corecore