17 research outputs found
Molecular imaging of pancreatic and rectal cancer: on a path towards optimized detection and response prediction
This thesis consists of two sections. In Section I, (pre)clinical research investigating novel targets for pre- and intraoperative molecular imaging of pancreatic cancer are discussed. In Section II, various studies are described which lay the groundwork for further investigation into response monitoring and prediction in rectal cancer using various imaging modalities.Fluoptics/Tiniest.solutions; Curium Netherlands B.V.; Viatris B.V.; Mobula IGM B.V.; Raadsheren B.V.; KARL STORZ Endoscopie Nederland B.V.; Chipsoft B.V.; ABN Amro Bank N.V.; Leiden University Medical CenterLUMC / Geneeskund
Molecular targeted positron emission tomography imaging and radionuclide therapy of pancreatic ductal adenocarcinoma
Simple Summary Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis, mainly due to difficulty in early detection of the disease by current imaging modalities. In this review, we discuss the more specific diagnostic imaging modality that evaluates the presence of specific tumour tracers via positron emission tomography. In addition, we review the available therapeutic applications of these tumour-specific tracers. Pancreatic ductal adenocarcinoma (PDAC) has an inauspicious prognosis, mainly due to difficulty in early detection of the disease by the current imaging modalities. The upcoming development of tumour-specific tracers provides an alternative solution for more accurate diagnostic imaging techniques for staging and therapy response monitoring. The future goal to strive for, in a patient with PDAC, should definitely be first to receive a diagnostic dose of an antibody labelled with a radionuclide and to subsequently receive a therapeutic dose of the same labelled antibody with curative intent. In the first part of this paper, we summarise the available evidence on tumour-targeted diagnostic tracers for molecular positron emission tomography (PET) imaging that have been tested in humans, together with their clinical indications. Tracers such as radiolabelled prostate-specific membrane antigen (PSMA)-in particular, F-18-labelled PSMA-already validated and successfully implemented in clinical practice for prostate cancer, also seem promising for PDAC. In the second part, we discuss the theranostic applications of these tumour-specific tracers. Although targeted radionuclide therapy is still in its infancy, lessons can already be learned from early publications focusing on dose fractioning and adding a radiosensitiser, such as gemcitabine.Imaging- and therapeutic targets in neoplastic and musculoskeletal inflammatory diseas
Intra-tumoral genomic heterogeneity in rectal cancer: mutational status is dependent on preoperative biopsy depth and location
Simple SummaryA subset of patients with rectal cancer are treated before surgery with chemoradiation. Unfortunately, this neoadjuvant chemoradiotherapy does not have the preferred effect of tumor downstaging in all patients, but does bring substantial side effects and possible complications. A pre-treatment prediction based on available parameters might provide a means to better select therapy for individual patients. Genomic mutational status of pre-treatment biopsies may provide prognostic information, however, it also might be influenced by tumor heterogeneity. This study investigates whether pre-treatment biopsy material is a reliable way of defining mutational status in rectal cancer.Neoadjuvant therapy before surgical resection is indicated for patients with locally advanced rectal cancer. However, a significant number of patients show minimal or no response to neoadjuvant therapy. Unfortunately, we are currently unable to predict response and identify non-responding patients before neoadjuvant treatment is given. Genomic mutational status might provide valuable prognostic information. However, it is unclear whether predictions based on genomic mutational status in single preoperative biopsies are reliable due to intra-tumoral heterogeneity. In this study we aim to investigate the reliability of genomic mutations found in single pre-operative biopsies by comparing genomic mutations to four other locations within the same tumor using next generation sequencing. Rectal cancer patients undergoing primary resection without neoadjuvant therapy were included. From each patient, one biopsy, two deep and two superficial samples were obtained and sequenced using a targeted next generation sequencing gene panel. Concordance between these five samples was assessed. In this feasibility study we included 11 patients. In 7 out of 11 (64%) patients, all 5 samples showed concordant mutations. In 4 out of 11 patients (36%) discordant mutations were observed. In conclusion, assessment of mutational status on a single pre-operative biopsy shows discordance with tumor tissue from other locations in 36% of cases. These results warrant careful interpretation of biopsy material analysis, as these might be influenced by tumor heterogeneity.Surgical oncolog
Side-by-side comparison of uPAR-targeting optical imaging antibodies and antibody fragments for fluorescence-guided surgery of solid tumors
Purpose Radical resection is paramount for curative oncological surgery. Fluorescence-guided surgery (FGS) aids in intraoperative identification of tumor-positive resection margins. This study aims to assess the feasibility of urokinase plasminogen activator receptor (uPAR) targeting antibody fragments for FGS in a direct comparison with their parent IgG in various relevant in vivo models. Procedures Humanized anti-uPAR monoclonal antibody MNPR-101 (uIgG) was proteolytically digested into F(ab')2 and Fab fragments named uFab2 and uFab. Surface plasmon resonance (SPR) and cell assays were used to determine in vitro binding before and after fluorescent labeling with IRDye800CW. Mice bearing subcutaneous HT-29 human colonic cancer cells were imaged serially for up to 120 h after fluorescent tracer administration. Imaging characteristics and ex vivo organ biodistribution were further compared in orthotopic pancreatic ductal adenocarcinoma (BxPc-3-luc2), head-and-neck squamous cell carcinoma (OSC-19-luc2-GFP), and peritoneal carcinomatosis (HT29-luc2) models using the clinical Artemis fluorescence imaging system. Results Unconjugated and conjugated uIgG, uFab2, and uFab specifically recognized uPAR in the nanomolar range as determined by SPR and cell assays. Subcutaneous tumors were clearly identifiable with tumor-to-background ratios (TBRs) > 2 after 72 h for uIgG-800F and 24 h for uFab2-800F and uFab-800F. For the latter two, mean fluorescence intensities (MFIs) dipped below predetermined threshold after 72 h and 36 h, respectively. Tumors were easily identified in the orthotopic models with uIgG-800F consistently having the highest MFIs and uFab2-800F and uFab-800F having similar values. In biodistribution studies, kidney and liver fluorescence approached tumor fluorescence after uIgG-800F administration and surpassed tumor fluorescence after uFab2-800F or uFab-800F administration, resulting in interference in the abdominal orthotopic mouse models. Conclusions In a side-by-side comparison, FGS with uPAR-targeting antibody fragments compared with the parent IgG resulted in earlier tumor visualization at the expense of peak fluorescence intensity.Surgical oncolog
Overview and future perspectives on tumor-targeted positron emission tomography and fluorescence imaging of pancreatic cancer in the era of neoadjuvant therapy
Simple Summary Patients diagnosed with pancreatic cancer have a poor prognosis at time of diagnosis, with a 5-year survival rate of merely 10%. The only treatment with curative intent is surgical resection of the tumor and adjacent tumor-containing lymph nodes. To improve surgical outcome and survival, additional (imaging) tools are needed that support complete surgical tumor resection. Firstly, more accurate monitoring of tumor response to neoadjuvant treatment and subsequent determination of resectability is needed. Secondly, an imaging tool is needed for intraoperative guidance allowing accurate identification, delineation, and complete resection of the tumor and suspected lymph nodes. Therefore, both tumor-targeted PET/CT before surgery and real time fluorescence-guidance during surgery could be helpful to improve patient outcome. This review focusses on literature considering tumor-targeted PET/CT and near-infrared fluorescence (NIRF) imaging. Several tumor-targeted agents are under clinical evaluation, and several other promising agents are currently tested preclinically, both with promising results. Their additional diagnostic value and feasibility for future implementation in standard clinical care of PDAC has yet to be established in phase III clinical trials. Background: Despite recent advances in the multimodal treatment of pancreatic ductal adenocarcinoma (PDAC), overall survival remains poor with a 5-year cumulative survival of approximately 10%. Neoadjuvant (chemo- and/or radio-) therapy is increasingly incorporated in treatment strategies for patients with (borderline) resectable and locally advanced disease. Neoadjuvant therapy aims to improve radical resection rates by reducing tumor mass and (partial) encasement of important vascular structures, as well as eradicating occult micrometastases. Results from recent multicenter clinical trials evaluating this approach demonstrate prolonged survival and increased complete surgical resection rates (R0). Currently, tumor response to neoadjuvant therapy is monitored using computed tomography (CT) following the RECIST 1.1 criteria. Accurate assessment of neoadjuvant treatment response and tumor resectability is considered a major challenge, as current conventional imaging modalities provide limited accuracy and specificity for discrimination between necrosis, fibrosis, and remaining vital tumor tissue. As a consequence, resections with tumor-positive margins and subsequent early locoregional tumor recurrences are observed in a substantial number of patients following surgical resection with curative intent. Of these patients, up to 80% are diagnosed with recurrent disease after a median disease-free interval of merely 8 months. These numbers underline the urgent need to improve imaging modalities for more accurate assessment of therapy response and subsequent re-staging of disease, thereby aiming to optimize individual patient's treatment strategy. In cases of curative intent resection, additional intra-operative real-time guidance could aid surgeons during complex procedures and potentially reduce the rate of incomplete resections and early (locoregional) tumor recurrences. In recent years intraoperative imaging in cancer has made a shift towards tumor-specific molecular targeting. Several important molecular targets have been identified that show overexpression in PDAC, for example: CA19.9, CEA, EGFR, VEGFR/VEGF-A, uPA/uPAR, and various integrins.Tumor-targeted PET/CT combined with intraoperative fluorescence imaging, could provide valuable information for tumor detection and staging, therapy response evaluation with re-staging of disease and intraoperative guidance during surgical resection of PDAC. Methods: A literature search in the PubMed database and (inter)national trial registers was conducted, focusing on studies published over the last 15 years. Data and information of eligible articles regarding PET/CT as well as fluorescence imaging in PDAC were reviewed. Areas covered: This review covers the current strategies, obstacles, challenges, and developments in targeted tumor imaging, focusing on the feasibility and value of PET/CT and fluorescence imaging for integration in the work-up and treatment of PDAC. An overview is given of identified targets and their characteristics, as well as the available literature of conducted and ongoing clinical and preclinical trials evaluating PDAC-targeted nuclear and fluorescent tracers.Imaging- and therapeutic targets in neoplastic and musculoskeletal inflammatory diseas
Baseline and early digital [18F]FDG PET/CT and multiparametric MRI contain promising features to predict response to neoadjuvant therapy in locally advanced rectal cancer patients: a pilot study
Objective In this pilot study, we investigated the feasibility of response prediction using digital [18F]FDG PET/computed tomography (CT) and multiparametric MRI before, during, and after neoadjuvant chemoradiation therapy in locally advanced rectal cancer (LARC) patients and aimed to select the most promising imaging modalities and timepoints for further investigation in a larger trial.Methods Rectal cancer patients scheduled to undergo neoadjuvant chemoradiation therapy were prospectively included in this trial, and underwent multiparametric MRI and [18F]FDG PET/CT before, 2 weeks into, and 6–8 weeks after chemoradiation therapy. Two groups were created based on pathological tumor regression grade, that is, good responders (TRG1-2) and poor responders (TRG3-5). Using binary logistic regression analysis with a cutoff value of P ≤ 0.2, promising predictive features for response were selected.Results Nineteen patients were included. Of these, 5 were good responders, and 14 were poor responders. Patient characteristics of these groups were similar at baseline. Fifty-seven features were extracted, of which 13 were found to be promising predictors of response. Baseline [T2: volume, diffusion-weighted imaging (DWI): apparent diffusion coefficient (ADC) mean, DWI: difference entropy], early response (T2: volume change, DWI: ADC mean change) and end-of-treatment presurgical evaluation MRI (T2: gray level nonuniformity, DWI: inverse difference normalized, DWI: gray level nonuniformity normalized), as well as baseline (metabolic tumor volume, total lesion glycolysis) and early response PET/CT (Δ maximum standardized uptake value, Δ peak standardized uptake value corrected for lean body mass), were promising features.Conclusion Both multiparametric MRI and [18F]FDG PET/CT contain promising imaging features to predict response to neoadjuvant chemoradiotherapy in LARC patients. A future larger trial should investigate baseline, early response, and end-of-treatment presurgical evaluation MRI and baseline and early response PET/CT.</div
Prostate-Specific Membrane Antigen Targeted Pet/CT Imaging in Patients with Colon, Gastric and Pancreatic Cancer
Simple Summary Prostate-specific membrane antigen (PSMA)-targeted PET/CT imaging is increasingly being used for (re)staging in prostate cancer. Although PSMA suggests specificity to prostate cancer, previous preclinical studies and case reports have shown this protein to be overexpressed by multiple other tumor types. This study aims to investigate the applicability of a PSMA-targeted PET/CT tracer to detect gastrointestinal cancers, including colon, pancreatic and gastric cancer. Current imaging modalities frequently misjudge disease stage in colorectal, gastric and pancreatic cancer. As treatment decisions are dependent on disease stage, incorrect staging has serious consequences. Previous preclinical research and case reports indicate that prostate-specific membrane antigen (PSMA)-targeted PET/CT imaging might provide a solution to some of these challenges. This prospective clinical study aims to assess the feasibility of [F-18]DCFPyL PET/CT imaging to target and visualize primary colon, gastric and pancreatic cancer. In this prospective clinical trial, patients with colon, gastric and pancreatic cancer were included and underwent both [F-18]DCFPyL and [F-18]FDG PET/CT scans prior to surgical resection or (for gastric cancer) neoadjuvant therapy. Semiquantitative analysis of immunohistochemical PSMA staining was performed on the surgical resection specimens, and the results were correlated to imaging parameters. The results of this study demonstrate detection of the primary tumor by [F-18]DCFPyL PET/CT in 7 out of 10 patients with colon, gastric and pancreatic cancer, with a mean tumor-to-blood pool ratio (TBR) of 3.3 and mean SUVmax of 3.6. However, due to the high surrounding uptake, visual distinction of these tumors was difficult, and the SUVmax and TBR on [F-18]FDG PET/CT were significantly higher than on [F-18]DCFPyL PET/CT. In addition, no correlation between PSMA expression in the resection specimen and SUVmax on [F-18]DCFPyL PET/CT was found. In conclusion, the detection of several gastrointestinal cancers using [F-18]DCFPyL PET/CT is feasible. However, low tumor expression and high uptake physiologically in organs/background hamper the clear distinction of the tumor. As a result, [F-18]FDG PET/CT was superior in detecting colon, gastric and pancreatic cancers.Cellular mechanisms in basic and clinical gastroenterology and hepatolog
Recurrent Intracranial Hypertension in a Toddler with Graves' Disease
Introduction: Idiopathic intracranial hypertension (IIH) is characterized by increased intracranial pressure without an evident cause. Obesity and the female sex have been recognized as risk factors for the development of this syndrome. Until now, Graves' disease has only been described in the literature as the probable cause of IIH in 7 patients. This report describes the case of a young girl with Graves' disease presenting with symptoms of intracranial hypertension (IH). Case Presentation: A 21-month-old girl presented with progressive symptoms of poor weight gain and bilateral exophthalmos. She also experienced difficulty sleeping, diarrhea multiple times per day, irritability, and heat intolerance. Laboratory investigation showed elevated free T4, fully suppressed TSH, and elevated anti-TSH antibodies, consistent with a diagnosis of new-onset Graves' disease. She was successfully treated with monotherapy thiamazole, titrated to the lowest possible dose of 1.25 mg once daily with normalization of thyroid function tests within 3 months of treatment initiation. After 18 months of treatment, her condition unexpectedly deteriorated as papilledema and slight esotropia were found at a routine checkup. An MRI and lumbar puncture showed increased intracranial pressure, but no underlying anatomical cause for the IH was found. Acetazolamide therapy was started, and papilledema in both eyes resolved within weeks. Unfortunately, papilledema has recurred several times over the following 2 years when attempts were made to decrease the acetazolamide dose. Discussion/Conclusion: This case report is the first to describe a very young patient who developed significant IIH in the chronic stage of Graves' disease. IIH development seemed to be related to the progression of the Graves' ophthalmopathy, rather than initiation of thiamazole therapy or fluctuations in serum fT4 levels