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Simple Summary: A subset of patients with rectal cancer are treated before surgery with chemora-
diation. Unfortunately, this neoadjuvant chemoradiotherapy does not have the preferred effect of
tumor downstaging in all patients, but does bring substantial side effects and possible complications.
A pre-treatment prediction based on available parameters might provide a means to better select
therapy for individual patients. Genomic mutational status of pre-treatment biopsies may provide
prognostic information, however, it also might be influenced by tumor heterogeneity. This study
investigates whether pre-treatment biopsy material is a reliable way of defining mutational status in
rectal cancer.

Abstract: Neoadjuvant therapy before surgical resection is indicated for patients with locally ad-
vanced rectal cancer. However, a significant number of patients show minimal or no response to
neoadjuvant therapy. Unfortunately, we are currently unable to predict response and identify non-
responding patients before neoadjuvant treatment is given. Genomic mutational status might provide
valuable prognostic information. However, it is unclear whether predictions based on genomic mu-
tational status in single preoperative biopsies are reliable due to intra-tumoral heterogeneity. In
this study we aim to investigate the reliability of genomic mutations found in single pre-operative
biopsies by comparing genomic mutations to four other locations within the same tumor using next
generation sequencing. Rectal cancer patients undergoing primary resection without neoadjuvant
therapy were included. From each patient, one biopsy, two deep and two superficial samples were
obtained and sequenced using a targeted next generation sequencing gene panel. Concordance
between these five samples was assessed. In this feasibility study we included 11 patients. In 7
out of 11 (64%) patients, all 5 samples showed concordant mutations. In 4 out of 11 patients (36%)
discordant mutations were observed. In conclusion, assessment of mutational status on a single
pre-operative biopsy shows discordance with tumor tissue from other locations in 36% of cases.
These results warrant careful interpretation of biopsy material analysis, as these might be influenced
by tumor heterogeneity.

Keywords: rectal cancer; intra-tumor heterogeneity; next generation sequencing

1. Introduction

Locally advanced rectal cancer (LARC) patients are currently treated with neoadjuvant
(chemo)radiotherapy followed by surgical resection [1]. In clinical practice, the observed
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response to neoadjuvant therapy is heterogeneous. A pathological complete response
(complete regression of tumor and/or pathological lymph nodes) is seen in 15–20% of
patients; whereas in the vast majority of patients (54–75%), neoadjuvant therapy results
in a partial response [2,3]. Unfortunately, a subset of 10–50% of LARC patients receives
futile neoadjuvant treatment when minimal or no response is observed [2,4]. Currently,
treatment stratification and prognosis is based on clinical TNM stage, tumor distance
to the mesorectal fascia and the presence of extramural vascular invasion [5]. Response
prediction based on parameters readily available before neoadjuvant treatment might
provide a means to ensure patient-tailored treatment and reduce unnecessary waiting
periods and therapy-related toxicity in non-responders.

Tumor associated immune response and intra-tumoral heterogeneity might be in-
volved in causing therapeutic resistance of the tumor to neoadjuvant therapy [6]. Intra-
tumoral genomic heterogeneity refers to the presence of genetically distinct subclones
within cancer lesions, and is developed by tumors in reaction to a diversity of microen-
vironmental factors, including hypoxia, tissue stiffness, immune response and chronic
inflammation or can be caused by the polyclonal origin of these tumors [7,8]. Intra-tumoral
genomic heterogeneity is particularly significant in colorectal cancer, and is attributed to
the presence of both microsatellite- and chromosomal instability [9–11].

In previous studies, the value of several clinical, pathological and radiological pa-
rameters in predicting response to neoadjuvant therapy has been assessed [12–20]. Unfor-
tunately, these studies have not resulted in clinically used prediction models so far. The
predictive value of genomic mutations in colorectal cancer has previously been investi-
gated; the studies concluded that KRAS, as well as RAS, BRAF and PIK3CA mutations,
are predictive of tumor response to anti-EGFR therapy [17,18,21–25]. Furthermore, a high
degree of intra-tumoral genomic heterogeneity has been associated with worse disease-free
survival and was correlated with a higher rate of liver metastases [26]. So far, no specific
genomic mutations have been found to accurately predict response to neoadjuvant therapy
in LARC patients [19].

A combination of genomic mutations might provide valuable prognostic information.
However, the reliability of next generation sequencing performed on routinely obtained
single preoperative biopsies has yet to be established. Intra-tumoral heterogeneity has
been shown to be significant in rectal tumors and their associated lymph nodes and
metastases [27,28]. Therefore, genomic mutations found in single preoperative biopsies
might vary within individual patients, depending on the biopsy location and depth.

In this study we aim to investigate the reliability of genomic mutations found in a single
preoperative biopsy by comparing these mutations to four other locations within the same
tumor using next generation sequencing for genes frequently mutated in colorectal cancer.

2. Materials and Methods
2.1. Patients

Rectal cancer patients from the Radboud University Medical Center, Nijmegen, the
Netherlands, and diagnosed between 2010 and 2012 with a biopsy-confirmed rectal ade-
nocarcinoma, were retrospectively included in this study. To exclude any influence of
neoadjuvant therapy on the results, only patients undergoing direct surgical resection of
the primary tumor (without neoadjuvant chemo- and/or radiotherapy) were included.

Patient characteristics were obtained from medical records, including age, gender,
clinical and pathological characteristics. This project was conducted in accordance with the
Declaration of Helsinki and did not require approval of the local IRB according to local
WMO regulations.

2.2. Tumor Identification and DNA Isolation

From each patient, five tissue samples were obtained from representative formalin-
fixed paraffin-embedded (FFPE) tumor blocks containing material of 1 preoperative diag-
nostic biopsy, 2 superficial tumor tissue samples and 2 deep (central) tumor tissue samples
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of the resected specimen. Optimal FFPE blocks (with adequate tumor cellularity of ≥20%
from full samples, and >10% in biopsy samples) for smMIP analysis were identified and
marked by an expert pathologist (I.N.) on representative hematoxylin and eosin (H&E)
stained slides. To obtain sufficient genomic DNA, marked tumor areas were cut out from
10 sequential (non-stained) slides (each 6 µm thick). DNA was isolated at 56 ◦C for 1 h
using TET-lysis buffer with 5% Chelex-100 (Bio-Rad, Hercules, CA, USA) and 400µg pro-
teinase K (Qiagen, Valencia, CA, USA), followed by inactivation at 95 ◦C during 10 min [29].
The DNA concentration was determined using the Qubit High Sensitivity Kit (Invitrogen,
Carlsbad, CA, USA) per manufacturer’s protocol.

2.3. SmMIP Sequencing

A panel of 911 smMIPs was used to detect variants in 31 cancer-related genes, as dis-
played in Table 1. To provide gender control, smMIPs targeting AMELX and AMELY were
included. The smMIP sequencing protocol has previously been clinically validated and
used in the Radboud University Medical Center [29]. One hundred nanogram of isolated
DNA was included per sample. After sample preparation, manual library preparation
was performed [29]. The purified libraries were diluted. Sequencing was performed using
the NextSeq500 (Illumina, San Diego, CA, USA) per manufacturer’s protocol (300 cycles
High Output sequencing Kit, Illumina, San Diego, CA, USA), resulting in 2 × 150 bp
paired-end reads.

2.4. Sequence Data Analysis

Sequence data were generated from the NextSeq500, after which Bcl to FASTQ con-
version and demultiplexing of barcoded reads were automatically performed. Sequence
Pilot software (JSI Medical Systems GmbH, Ettenheim, Germany) was used for generating
consensus reads and variant identification, with settings as previously described [29]. Vari-
ants found in samples passing gender control and exceeding an average minimum reading
depth of 180 were automatically filtered with an in-house Python script, as depicted in
Figure 1. This threshold excludes, with a certainty of >95%, the presence of a mutation at
minimally 10% mutant allele frequency within covered regions. As SOX9 and SEC63 have
many pseudogenes resulting in uncertainty regarding found mutations, we have excluded
these from further analysis. Due to a technical sequencing artifact (in all samples), PTEN
mutation c.407G>A was excluded from the analysis.

2.5. Statistical Analysis

Statistical analysis was performed using SPSS version 23 (SPSS, Inc., Chicago, IL,
USA). Numerical data is presented as mean (standard deviation) or median (interquartile
range) based on distribution. Categorical data is presented as frequencies and percentages.
In order to quantify tumor heterogeneity, differences in mutational status between biopsies,
deep and superficial tumor samples were analyzed by calculating the percentages of con-
cordance and discordance. Concordance was defined as all five samples (1 biopsy, 2 deep
samples, and 2 superficial samples) showing identical (or no) mutations. Discordance was
defined as ≥1 mutation(s) in any of the 5 samples, which was not found in any of the other
samples. For all tests performed, p < 0.05 was considered statistically significant.
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Table 1. Overview of regions targeted by Transcan smMIP panel.

Gene Transcript ID (RefSeq) Transcript ID (Ensembl) Exon Number Targeted Regions Positions Analyzed for Variants

ACVR1B ENST00000257963 NM_004302 02 Activin types I and II receptor domain c.92−5 to c.331+5
03–09 Transforming growth factor beta type I GS-motif c.556 to c.1518+5

ACVR2A ENST00000241416 NM_001616 06–11 Protein kinase domain c.673−5 to c.1542+5
AMER1 ENST00000330258 NM_152424 02 WTX Protein c.639 to c.1629

APC ENST00000257430 NM_000038 01–16 Whole gene c1−5 to c.8532+5
ARID1A ENST00000324856 NM_006015 11–12 ARID DNA-binding domain c.2989 to c.3397

20 SWI/SNF-like complex subunit BAF250/Osa c.5820 to c.6777
B2M ENST00000558401 NM_004048 02 Immunoglobulin C1-set domain c.68−5 to c.346+5

BRAF ENST00000288602 NM_004333 15 Codon D594-K601 c.1742−5 to c.1860+5
CASP5 ENST00000393141 NM_004347 02–03 CARD domain c.8 to c.433+5
CASP8 ENST00000358485 NM_001080125 07–09 Caspase domain c.838 to c.1617+5

CTNNB1 ENST00000349496 NM_001904 03 Codon D32-S45 c.36 to c.163
08 Codon W383-N387 c.1082−5 to c.1185+5

EGFR ENST00000275493 NM_005228 12 Receptor L domain c.1391 to c.1498+5
18–21 Protein tyrosine kinase c.2062−5 to c.2625+5

ERBB2 ENST00000269571 NM_004448 18–24 Protein tyrosine kinase c.2101 to c.2970+5
FBXW7 ENST00000281708 NM_033632 07–12 WD domain, G-beta repeat c.1035 to c.2124+5
GNAS ENST00000371085 NM_000516 08–09 Codon R201 and Q227 c.586−5 to c.718+5
IDH2 ENST00000330062 NM_002168 04 Codon R140 and R172 c.374−5 to c.534+5
KRAS ENST00000311936 NM_004985 02 Codon G12, and G13 c.1−5 to c.111+5

03 Codon A59 and Q61 c.112−5 to c.232
04 Codon K117 and A146 c.291−5 to c.385 and c.402 to c.450+5

MET ENST00000318493 NM_001127500 15–21 Protein tyrosine kinase c.3140 to c.4227+5
NRAS ENST00000369535 NM_002524 02 Codon G12 and G13 c.1−5 to c.99

03 Codon A59 and Q61 c.135 to c.272
PIK3CA ENST00000263967 NM_006218 10 Codon E542 to Q546 c.1557 to c.1664+5

21 Codon M1043 to G1049 c.3041 to c.3207+5
POLE ENST00000320574 NM_006231 03–13 DNA-directed DNA polymerase, family B, exonuclease domain c.205−5 to c.1301

PTEN ENST00000371953 NM_000314 05–08 Dual specificity phosphatase, catalytic domain, C2 domain of PTEN
tumor-suppressor protein c.310 to c.1026+5

RNF43 ENST00000407977 NM_017763 02–10 Whole CDS c.1−5 to c.2352+5
SMAD2 ENST00000262160 NM_005901 02–11 Whole CDS c.1−5 to c.1404+5
SMAD4 ENST00000342988 NM_005359 03–04 MH1 domain c.250−5 to c.454+5

09–12 MH2 domain c.956−5 to c.1659+5
SMARCA2 ENST00000349721 NM_003070 15–21 SNF2-related, N-terminal domain c.2185−5 to c.3078+5

23–25 Helicase, C-terminal c.3136 to c.3684+5
SMARCA4 ENST00000450717 NM_001128846 15–21 SNF2-related, N-terminal domain c.2275−5 to c.3168+5

23–25 Helicase, C-terminal c.3324 to c.3374+5
SMARCB1 ENST00000263121 NM_003073 05–09 SNF5/SMARCB1/INI1 c.501−5 to c.1158+5

SOX9 ENST00000245479 NM_000346 01–03 Whole CDS c.1−5 to c.1530+5
TCF7L2 ENST00000369397 NM_030756 01–06 CTNNB1 binding, N-terminal c.1−5 to c.719+5

09–10 High mobility group box domain c.933−5 to c.1200+5
TGFBR2 ENST00000359013 NM_001024847 04 Codon E125 c.339−5 to c.529+5

TP53 ENST00000269305 NM_000546 03–08 P53 DNA-binding domain c.83 to c.919+5
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Figure 1. Flowchart of smMIP analysis data filtering. Overview of steps involved in data filtering
before smMIP data analysis was performed.

3. Results
3.1. Patients

Data and tissue of 11 patients were included in this study. Patients were on average
72 ± 27.4 years old and included six males and five females. Of these, nine had a pT3 tumor
and two a pT4 tumor. All patients were diagnosed with a UICC stage 2 or 3 tumor (Table 2).
All patients were treated with immediate resection of the rectal tumor, without prior chemo-
and/or radiotherapy. The rectal tumor was on average located 57.8 ± 46.3 mm from the
anal verge and measured 53.5 ± 21.6 mm in diameter. Patient 7 had a poorly differentiated
tumor (UICC grade 3), whereas all the other patients had a moderately/well differentiated
tumor (UICC grade 1–2). All tumors were microsatellite stable. Detailed clinicopathological
features are summarized in Table 2.
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Table 2. Patient characteristics.

Variables N = 11

Age (years) Mean (SD) 72.2 (27.4)
Gender Male 6 (55%)

Female 5 (45%)
pT 3 9 (82%)

4 2 (18%)
pN 0 6 (55%)

1 3 (27%)

UICC stage

2
2A
3A
3C

2 (18%)
6
4
1

EMVI
Differentiation (UICC grade)

Yes 4 (36%)
No 6 (55%)

Missing 1 (9%)
Well/moderate (UICC grade 1–2) 9 (82%)

Poor (UICC grade 3) 1 (9%)
Missing 1 (9%)

Distance to CRM (mm) Mean (SD) 14.1 (7.7)
Diameter tumor (mm) Mean (SD) 53.5 (21.6)

Total number of lymph nodes Median (IQR) 15 (12–19)
Number of tumor positive lymph nodes Median (IQR) 0 (0–3)

Distance from anal verge (mm) Mean (SD) 57.8 (46.3)
Abbreviations: UICC grade, Union for International Cancer Control pathological differentiation grade; SD,
standard deviation; pT, clinical tumor stage; pN, clinical nodal stage; EMVI, extramural vascular invasion; CRM,
circumferential resection margin; IQR, interquartile range.

3.2. Mutation Concordance

Twenty-eight genomic mutations were found in the following eight genes: APC (9/11),
BRAF (1/11), FBXW7 (2/11), KRAS (7/11), PIK3CA (1/11), PTEN (1/11), SMAD4 (1/11)
and TP53 (6/11). Insufficient (partial) read depth was found in biopsy samples of three
patients (patient 5, 8 and 9). In 7 out of 11 (64%) patients, all 5 samples showed concordant
mutations. In 4 out of 11 patients (36%) a discordance in mutations was observed within
the 5 samples. In patient 2, a discordance in KRAS (2 different mutations), SMAD4 and
TP53 mutations was found between the superficial sample and the biopsy, as well as, both
deep samples. Patient 4 showed discordance as the TP53 mutation was only found in the
biopsy and one of two superficial samples. Patient 5 showed discordance for one of the two
APC mutations. This APC mutation was only found in the superficial samples compared to
the deep samples (biopsy results were not available). In patient 8, discordance was found
as different TP53 mutations were found in the biopsy compared to the deep and superficial
samples. These results are depicted in Figures 2 and 3.

Interestingly, patients 4, 5 and 8 have one discordant mutation, whereas patient 2
has five. No differences in differentiation grade, microsatellite status, or tumor stage
were found to explain this difference. However, patient 2 was the only patient with
a mucinous tumor at pathological examination, whereas all the other patients had not
otherwise specified adenocarcinomas.

In this study, 13 APC mutations were found, of which 11 most likely result in loss
of function (5 non-sense and 6 frameshift mutations). Regarding TP53 mutations, 5 mis-
sense mutations have been found which are non-functional according to the TP53-IACR
database [30]. Furthermore, the effect of the other two TP53 mutations (one frameshift
and one frame deletion) is unclear. All but one KRAS mutations are activating hotspot
mutations, and the BRAF mutation was found in very close proximity to the real hotspot
and most likely also results in increased BRAF activity [31–33]. When compared to pre-
vious results from the TCGA study in rectal cancers, the percentage of found mutation
frequencies is similar [34].
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When putting these found mutations into a clinical perspective, only KRAS mutations
are currently of primary influence in colorectal cancer patients, as these are predictive for
cetuximab and panitumumab therapy success. Interestingly, two KRAS hotspot mutations
(KRAS c.35G > A and KRAS c.183A > T) were discordant.

4. Discussion

Response to neoadjuvant therapy is heterogeneous in LARC patients [2,4]. Adequate
stratification based on parameters available before treatment might enable better use of
neoadjuvant therapy. In this light, genomic mutational status might provide valuable
prognostic information.

In this study, genomic mutations in pre-operative biopsies were compared to four other
locations within the same tumor using next generations sequencing. In 36% of the patients,
evaluation of genomic mutational status on a single pre-operative biopsy has shown
discordance between the various tumor samples. This illustrates the genomic variability
in rectal cancer and could explain the difficulties experienced so far in obtaining reliable
biomarkers. These results are in line with previous evidence supporting the presence of
intra-tumoral genomic heterogeneity in a considerable proportion of rectal cancers [35].
Three previous studies have compared genomic mutations in up to three intratumoral
locations. Hardiman et al. reported up to 10 coding variants uniquely corresponding
to 1 of 3 of the tumor locations in their study of 6 patients [35]. In the study of Bettoni
et al., only 27% of the observed mutations corresponded to all three samples of a single
rectal adenocarcinoma in one patient [36]. On the other hand, Dijkstra et al. reported no
differences in mutational status between deep and superficial colorectal cancer tissue in
30 patients [37]. However, the spatial distance between compared tumor samples in this
study was limited, as samples were taken from serial sectioning of FFPE blocks three times
every 1.2 mm. This might have resulted in serial sectioning of one tumor clone (and thus
no difference in found mutations), whereas our study (and others) used tumor samples
with a higher spatial distance recovered from various tumor locations.

This study has several limitations. First of all, the small sample size. Moreover, in-
sufficient read depth was achieved in biopsy material from three patients. Therefore, we
could not identify variants at all target regions for these samples. Also, the limited targeted
next generation sequencing panel might have influenced the interpretation of our results.
The number of discordant cases might actually be higher, as this targeted gene panel only
provides information on a selected number of mutations. Furthermore, the tumor cell
percentage in several samples was low, which may have resulted in mutant allele frequen-
cies below the calling threshold. Lastly, there is no 100% certainty the found mutations
were not germ-line mutations, however, considering the observed allelic frequency, this is
very unlikely.

To increase the reliability of the biopsy analysis, the use of multiple and possibly
even deeper/larger preoperative biopsies might provide a better representation of intra-
tumoral heterogeneity. However, this might also increase the risk of procedure-related
complications. A second possibility might be the application of whole exome sequencing
or larger targeted gene panels (such as the TSO500, Illumina, San Diego, CA, USA), as
this possibly provides a more elaborate analysis of genomic mutations, as compared to
next generation sequencing using a limited targeted gene panel. Using these techniques,
the mutant-allele heterogeneity (MATH) score was developed to quantitatively assess
the spread of allele frequencies and has been correlated to response [19,38]. However, as
sampling errors are innate to the biopsy technique, parameters derived from full tumor
imaging might be preferable to incorporate characteristics of all genetic subclones present
in these cancers. Following this, predicting algorithms should therefore include various
clinical, radiological and pathological parameters to overcome the complexity of tumor
heterogeneity.
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5. Conclusions

In conclusion, assessment of mutational status on a single pre-operative biopsy shows
discordance with tumor tissue from other locations in 36% of cases. These results war-
rant careful interpretation of biopsy material analysis, as they might be influenced by
tumor heterogeneity.
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