31 research outputs found

    Geographic variations and temporal trends of Salmonella-associated hospitalization in the U.S. elderly, 1991-2004: A time series analysis of the impact of HACCP regulation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>About 1.4 million <it>Salmonella </it>infections, a common food-borne illness, occur in the U.S. annually; the elderly (aged 65 or above) are most susceptible. In 1997, the USDA introduced the Pathogen Reduction and Hazard Analysis and Critical Control Points Systems (PR/HACCP) which demands regular <it>Salmonella </it>testing in various establishments processing meat products, such as broiler chickens. Impact evaluations of PR/HACCP on hospitalizations related to <it>Salmonella </it>are lacking.</p> <p>Methods</p> <p>Hospitalization records of the U.S. elderly in 1991-2004 were obtained from the Centers of Medicare and Medicaid Services. Harmonic regression analyses were performed to evaluate the long-term trends of <it>Salmonella</it>-related hospitalizations in pre- and post-HACCP periods. Seasonal characteristics of the outcome in the nine Census divisions of the contiguous U.S. were also derived and contrasted.</p> <p>Results</p> <p>Predicted rates decreased in most divisions after 1997, except South Atlantic, East South Central, and West South Central. These three divisions also demonstrated higher overall hospitalization rates, pronounced seasonal patterns, and consistent times to peak at about 32<sup>nd </sup>to 34<sup>th </sup>week of the year.</p> <p>Conclusion</p> <p>The impact of HACCP was geographically different. South Atlantic, East South Central, and West South Central divisions should be targeted in further <it>Salmonella </it>preventive programs. Further research is needed to identify the best program type and timing of implementation.</p

    Ultra-Fast and Sensitive Detection of Non-Typhoidal Salmonella Using Microwave-Accelerated Metal-Enhanced Fluorescence (“MAMEF”)

    Get PDF
    Certain serovars of Salmonella enterica subsp. enterica cause invasive disease (e.g., enteric fever, bacteremia, septicemia, meningitis, etc.) in humans and constitute a global public health problem. A rapid, sensitive diagnostic test is needed to allow prompt initiation of therapy in individual patients and for measuring disease burden at the population level. An innovative and promising new rapid diagnostic technique is microwave-accelerated metal-enhanced fluorescence (MAMEF). We have adapted this assay platform to detect the chromosomal oriC locus common to all Salmonella enterica subsp. enterica serovars. We have shown efficient lysis of biologically relevant concentrations of Salmonella spp. suspended in bacteriological media using microwave-induced lysis. Following lysis and DNA release, as little as 1 CFU of Salmonella in 1 ml of medium can be detected in <30 seconds. Furthermore the assay is sensitive and specific: it can detect oriC from Salmonella serovars Typhi, Paratyphi A, Paratyphi B, Paratyphi C, Typhimurium, Enteritidis and Choleraesuis but does not detect Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Streptococcus pneumoniae, Haemophilus influenzae or Acinetobacter baumanii. We have also performed preliminary experiments using a synthetic Salmonella oriC oligonucleotide suspended in whole human blood and observed rapid detection when the sample was diluted 1∶1 with PBS. These pre-clinical data encourage progress to the next step to detect Salmonella in blood (and other ordinarily sterile, clinically relevant body fluids)

    Identification by PCR of Non-typhoidal Salmonella enterica Serovars Associated with Invasive Infections among Febrile Patients in Mali

    Get PDF
    The genus Salmonella has more than 2500 serological variants (serovars), such as Salmonella enterica serovar Typhi and Salmonella Paratyphi A and B, that cause, respectively, typhoid and paratyphoid fevers (enteric fevers), and a large number of non-typhoidal Salmonella (NTS) serovars that cause gastroenteritis in healthy hosts. In young infants, the elderly and immunocompromised hosts, NTS can cause severe, fatal invasive disease. Multiple studies of pediatric patients in sub-Saharan Africa have documented the important role of NTS, in particular Salmonella Typhimurium and Salmonella Enteritidis (and to a lesser degree Salmonella Dublin), as invasive bacterial pathogens. Salmonella spp. are isolated from blood and identified by standard microbiological techniques and the serovar is ascertained by agglutination with commercial antisera. PCR-based typing techniques are becoming increasingly popular in developing countries, in part because high quality typing sera are difficult to obtain and expensive and H serotyping is technically difficult. We have developed a series of polymerase chain reactions (PCRs) to identify Salmonella Typhimurium and variants, Salmonella Enteritidis and Salmonella Dublin. We successfully identified 327 Salmonella isolates using our multiplex PCR. We also designed primers to detect Salmonella Stanleyville, a serovar found in West Africa. Another PCR generally differentiated diphasic Salmonella Typhimurium and monophasic Salmonella Typhimurium variant strains from other closely related strains. The PCRs described here will enable more laboratories in developing countries to serotype NTS that have been isolated from blood

    Evolution of Salmonella enterica Virulence via Point Mutations in the Fimbrial Adhesin

    Get PDF
    Whereas the majority of pathogenic Salmonella serovars are capable of infecting many different animal species, typically producing a self-limited gastroenteritis, serovars with narrow host-specificity exhibit increased virulence and their infections frequently result in fatal systemic diseases. In our study, a genetic and functional analysis of the mannose-specific type 1 fimbrial adhesin FimH from a variety of serovars of Salmonella enterica revealed that specific mutant variants of FimH are common in host-adapted (systemically invasive) serovars. We have found that while the low-binding shear-dependent phenotype of the adhesin is preserved in broad host-range (usually systemically non-invasive) Salmonella, the majority of host-adapted serovars express FimH variants with one of two alternative phenotypes: a significantly increased binding to mannose (as in S. Typhi, S. Paratyphi C, S. Dublin and some isolates of S. Choleraesuis), or complete loss of the mannose-binding activity (as in S. Paratyphi B, S. Choleraesuis and S. Gallinarum). The functional diversification of FimH in host-adapted Salmonella results from recently acquired structural mutations. Many of the mutations are of a convergent nature indicative of strong positive selection. The high-binding phenotype of FimH that leads to increased bacterial adhesiveness to and invasiveness of epithelial cells and macrophages usually precedes acquisition of the non-binding phenotype. Collectively these observations suggest that activation or inactivation of mannose-specific adhesive properties in different systemically invasive serovars of Salmonella reflects their dynamic trajectories of adaptation to a life style in specific hosts. In conclusion, our study demonstrates that point mutations are the target of positive selection and, in addition to horizontal gene transfer and genome degradation events, can contribute to the differential pathoadaptive evolution of Salmonella
    corecore