139 research outputs found
The Origin and Evolution of G Protein-Coupled Receptor Kinases
G protein-coupled receptor (GPCR) kinases (GRKs) play key role in homologous desensitization of GPCRs. GRKs phosphorylate activated receptors, promoting high affinity binding of arrestins, which precludes G protein coupling. Direct binding to active GPCRs activates GRKs, so that they selectively phosphorylate only the activated form of the receptor regardless of the accessibility of the substrate peptides within it and their Ser/Thr-containing sequence. Mammalian GRKs were classified into three main lineages, but earlier GRK evolution has not been studied. Here we show that GRKs emerged at the early stages of eukaryotic evolution via an insertion of a kinase similar to ribosomal protein S6 kinase into a loop in RGS domain. GRKs in Metazoa fall into two clades, one including GRK2 and GRK3, and the other consisting of all remaining GRKs, split into GRK1-GRK7 lineage and GRK4-GRK5-GRK6 lineage in vertebrates. One representative of each of the two ancient clades is found as early as placozoan Trichoplax adhaerens. Several protists, two oomycetes and unicellular brown algae have one GRK-like protein, suggesting that the insertion of a kinase domain into the RGS domain preceded the origin of Metazoa. The two GRK families acquired distinct structural units in the N- and C-termini responsible for membrane recruitment and receptor association. Thus, GRKs apparently emerged before animals and rapidly expanded in true Metazoa, most likely due to the need for rapid signalling adjustments in fast-moving animals
Threonine 180 Is Required for G-protein-coupled Receptor Kinase 3- and β-Arrestin 2-mediated Desensitization of the µ-Opioid Receptor in Xenopus Oocytes
To determine the sites in the µ-opioid receptor (MOR) critical for agonist-dependent desensitization, we constructed and coexpressed MORs lacking potential phosphorylation sites along with G-protein activated inwardly rectifying potassium channels composed of Kir3.1 and Kir3.4 subunits in Xenopus oocytes. Activation of MOR by the stable enkephalin analogue, [D-Ala2,MePhe4,Glyol5]enkephalin, led to homologous MOR desensitization in oocytes coexpressing both G-protein-coupled receptor kinase 3 (GRK3) and beta -arrestin 2 (arr3). Coexpression with either GRK3 or arr3 individually did not significantly enhance desensitization of responses evoked by wild type MOR activation. Mutation of serine or threonine residues to alanines in the putative third cytoplasmic loop and truncation of the C-terminal tail did not block GRK/arr3-mediated desensitization of MOR. Instead, alanine substitution of a single threonine in the second cytoplasmic loop to produce MOR(T180A) was sufficient to block homologous desensitization. The insensitivity of MOR(T180A) might have resulted either from a block of arrestin activation or arrestin binding to MOR. To distinguish between these alternatives, we expressed a dominant positive arrestin, arr2(R169E), that desensitizes G protein-coupled receptors in an agonist-dependent but phosphorylation-independent manner. arr2(R169E) produced robust desensitization of MOR and MOR(T180A) in the absence of GRK3 coexpression. These results demonstrate that the T180A mutation probably blocks GRK3- and arr3-mediated desensitization of MOR by preventing a critical agonist-dependent receptor phosphorylation and suggest a novel GRK3 site of regulation not yet described for other G-protein-coupled receptors
Enhanced Mutant Compensates for Defects in Rhodopsin Phosphorylation in the Presence of Endogenous Arrestin-1
We determined the effects of different expression levels of arrestin-1-3A mutant with enhanced binding to light-activated rhodopsin that is independent of phosphorylation. To this end, transgenic mice that express mutant rhodopsin with zero, one, or two phosphorylation sites, instead of six in the WT mouse rhodopsin, and normal complement of WT arrestin-1, were bred with mice expressing enhanced phosphorylation-independent arrestin-1-3A mutant. The resulting lines were characterized by retinal histology (thickness of the outer nuclear layer, reflecting the number of rod photoreceptors, and the length of the outer segments, which reflects rod health), as well as single- and double-flash ERG to determine the functionality of rods and the rate of photoresponse recovery. The effect of co-expression of enhanced arrestin-1-3A mutant with WT arrestin-1 in these lines depended on its level: higher (240% of WT) expression reduced the thickness of ONL and the length of OS, whereas lower (50% of WT) expression was harmless in the retinas expressing rhodopsin with zero or one phosphorylation site, and improved photoreceptor morphology in animals expressing rhodopsin with two phosphorylation sites. Neither expression level increased the amplitude of the a- and b-wave of the photoresponse in any of the lines. However, high expression of enhanced arrestin-1-3A mutant facilitated photoresponse recovery 2-3-fold, whereas lower level was ineffective. Thus, in the presence of normal complement of WT arrestin-1 only supra-physiological expression of enhanced mutant is sufficient to compensate for the defects of rhodopsin phosphorylation
Crystal Structure of β-Arrestin at 1.9 Å Possible Mechanism of Receptor Binding and Membrane Translocation
AbstractBackground: Arrestins are responsible for the desensitization of many sequence-divergent G protein-coupled receptors. They compete with G proteins for binding to activated phosphorylated receptors, initiate receptor internalization, and activate additional signaling pathways.Results: In order to understand the structural basis for receptor binding and arrestin's function as an adaptor molecule, we determined the X-ray crystal structure of two truncated forms of bovine β-arrestin in its cytosolic inactive state to 1.9 Å. Mutational analysis and chimera studies identify the regions in β-arrestin responsible for receptor binding specificity. β-arrestin demonstrates high structural homology with the previously solved visual arrestin. All key structural elements responsible for arrestin's mechanism of activation are conserved.Conclusions: Based on structural analysis and mutagenesis data, we propose a previously unappreciated part in β-arrestin's mode of action by which a cationic amphipathic helix may function as a reversible membrane anchor. This novel activation mechanism would facilitate the formation of a high-affinity complex between β-arrestin and an activated receptor regardless of its specific subtype. Like the interaction between β-arrestin's polar core and the phosphorylated receptor, such a general activation mechanism would contribute to β-arrestin's versatility as a regulator of many receptors
Kinetics of Rhodopsin Deactivation and Its Role in Regulating Recovery and Reproducibility of Rod Photoresponse
The single photon response (SPR) in vertebrate phototransduction is regulated by the dynamics of R* during its lifetime, including the random number of phosphorylations, the catalytic activity and the random sojourn time at each phosphorylation level. Because of this randomness the electrical responses are expected to be inherently variable. However the SPR is highly reproducible. The mechanisms that confer to the SPR such a low variability are not completely understood. The kinetics of rhodopsin deactivation is investigated by a Continuous Time Markov Chain (CTMC) based on the biochemistry of rhodopsin activation and deactivation, interfaced with a spatio-temporal model of phototransduction. The model parameters are extracted from the photoresponse data of both wild type and mutant mice, having variable numbers of phosphorylation sites and, with the same set of parameters, the model reproduces both WT and mutant responses. The sources of variability are dissected into its components, by asking whether a random number of turnoff steps, a random sojourn time between steps, or both, give rise to the known variability. The model shows that only the randomness of the sojourn times in each of the phosphorylated states contributes to the Coefficient of Variation (CV) of the response, whereas the randomness of the number of R* turnoff steps has a negligible effect. These results counter the view that the larger the number of decay steps of R*, the more stable the photoresponse is. Our results indicate that R* shutoff is responsible for the variability of the photoresponse, while the diffusion of the second messengers acts as a variability suppressor
The Dynamics of the Neuropeptide Y Receptor Type 1 Investigated by Solid-State NMR and Molecular Dynamics Simulation
We report data on the structural dynamics of the neuropeptide Y (NPY) G-protein-coupled receptor (GPCR) type 1 (Y1R), a typical representative of class A peptide ligand GPCRs, using a combination of solid-state NMR and molecular dynamics (MD) simulation. First, the equilibrium dynamics of Y1R were studied using 15N-NMR and quantitative determination of 1H-13C order parameters through the measurement of dipolar couplings in separated-local-field NMR experiments. Order parameters reporting the amplitudes of the molecular motions of the C-H bond vectors of Y1R in DMPC membranes are 0.57 for the Cα sites and lower in the side chains (0.37 for the CH2 and 0.18 for the CH3 groups). Different NMR excitation schemes identify relatively rigid and also dynamic segments of the molecule. In monounsaturated membranes composed of longer lipid chains, Y1R is more rigid, attributed to a higher hydrophobic thickness of the lipid membrane. The presence of an antagonist or NPY has little influence on the amplitude of motions, whereas the addition of agonist and arrestin led to a pronounced rigidization. To investigate Y1R dynamics with site resolution, we conducted extensive all-atom MD simulations of the apo and antagonist-bound state. In each state, three replicas with a length of 20 μs (with one exception, where the trajectory length was 10 μs) were conducted. In these simulations, order parameters of each residue were determined and showed high values in the transmembrane helices, whereas the loops and termini exhibit much lower order. The extracellular helix segments undergo larger amplitude motions than their intracellular counterparts, whereas the opposite is observed for the loops, Helix 8, and termini. Only minor differences in order were observed between the apo and antagonist-bound state, whereas the time scale of the motions is shorter for the apo state. Although these relatively fast motions occurring with correlation times of ns up to a few µs have no direct relevance for receptor activation, it is believed that they represent the prerequisite for larger conformational transitions in proteins
Insights into congenital stationary night blindness based on the structure of G90D rhodopsin
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/102109/1/embr201344.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/102109/2/embr201344.reviewer_comments.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/102109/3/embr201344-sup-0001.pd
The Conformational Equilibrium of the Neuropeptide Y2 Receptor in Bilayer Membranes
Dynamic structural transitions within the seven-transmembrane bundle represent the mechanism by which G-protein-coupled receptors convert an extracellular chemical signal into an intracellular biological function. Here, the conformational dynamics of the neuropeptide Y receptor type 2 (Y2R) during activation was investigated. The apo, full agonist-, and arrestin-bound states of Y2R were prepared by cell-free expression, functional refolding, and reconstitution into lipid membranes. To study conformational transitions between these states, all six tryptophans of Y2R were(13)C-labeled. NMR-signal assignment was achieved by dynamic-nuclear-polarization enhancement and the individual functional states of the receptor were characterized by monitoring(13)C NMR chemical shifts. Activation of Y2R is mediated by molecular switches involving the toggle switch residue Trp281(6.48)of the highly conserved SWLP motif and Trp327(7.55)adjacent to the NPxxY motif. Furthermore, a conformationally preserved "cysteine lock"-Trp116(23.50)was identified
Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser.
G-protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signalling to numerous G-protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin-arrestin assembly in which rhodopsin uses distinct structural elements, including transmembrane helix 7 and helix 8, to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a ∼20° rotation between the amino and carboxy domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. This structure provides a basis for understanding GPCR-mediated arrestin-biased signalling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology
- …