367 research outputs found

    Validation testing of shallow notched round-bar screening test specimens

    Get PDF
    The capability of shallow-notched, round-bar, tensile specimens for screening critical environments as they affect the material fracture properties of the space shuttle main engine was tested and analyzed. Specimens containing a 0.050-inch-deep circumferential sharp notch were cyclically loaded in a 5000-psi hydrogen environment at temperatures of +70 and -15 F. Replication of test results and a marked change in cyclic life because of temperature variation demonstrated the validity of the specimen type to be utilized for screening tests

    Fracture mechanics analysis of a high-pressure hydrogen facility compressor

    Get PDF
    The investigation and analysis of a high-pressure hydrogen facility compressor is chronicled, and a life prediction based on fracture mechanics is presented. Crack growth rates in SA 105 Gr II steel are developed for the condition of sustained loading, using a hypothesis of hydrogen embrittlement associated with plastic zone reverse yielding. The resultant formula is compared with test data obtained from laboratory specimens

    Design of the Annular Suspension and Pointing System (ASPS) (including design addendum)

    Get PDF
    The Annular Suspension and Pointing System is an experiment pointing mount designed for extremely precise 3 axis orientation of shuttle experiments. It utilizes actively controlled magnetic bearing to provide noncontacting vernier pointing and translational isolation of the experiment. The design of the system is presented and analyzed

    Subdiffusion and weak ergodicity breaking in the presence of a reactive boundary

    Full text link
    We derive the boundary condition for a subdiffusive particle interacting with a reactive boundary with finite reaction rate. Molecular crowding conditions, that are found to cause subdiffusion of larger molecules in biological cells, are shown to effect long-tailed distributions with identical exponent for both the unbinding times from the boundary to the bulk and the rebinding times from the bulk. This causes a weak ergodicity breaking: typically, an individual particle either stays bound or remains in the bulk for very long times. We discuss why this may be beneficial for in vivo gene regulation by DNA-binding proteins, whose typical concentrations are nanomolarComment: 4 pages, 1 figure, REVTeX4, accepted to Phys Rev Lett, some typos correcte

    Current State of Dendritic Cell-Based Immunotherapy: Opportunities for in vitro Antigen Loading of Different DC Subsets?

    Get PDF
    Dendritic cell (DC) based cancer immunotherapy aims at the activation of the immune system, and in particular tumor-specific cytotoxic T lymphocytes (CTLs) to eradicate the tumor. DCs represent a heterogeneous cell population, including conventional DCs (cDCs), consisting of cDC1s, cDC2s, plasmacytoid DCs (pDCs), and monocyte-derived DCs (moDCs). These DC subsets differ both in ontogeny and functional properties, such as the capacity to induce CD4+ and CD8+ T-cell activation. MoDCs are most frequently used for vaccination purposes, based on technical aspects such as availability and in vitro expansion. However, whether moDCs are superior over other DC subsets in inducing anti-tumor immune responses, is unknown, and likely depends on tumor type and composition of the tumor microenvironment. In this review, we discuss cellular aspects essential for DC vaccination efficacy, and the most recent findings on different DC subsets that could be used for DC-based cancer immunotherapy. This can prove valuable for the future design of more effective DC vaccines by choosing different DC subsets, and sheds light on the working mechanism of DC immunotherapy

    Combination Strategies to Optimize Efficacy of Dendritic Cell-Based Immunotherapy

    Get PDF
    Dendritic cells (DCs) are antigen-presenting cells (APCs) that are essential for the activation of immune responses. In various malignancies, these immunostimulatory properties are exploited by DC-therapy, aiming at the induction of effective anti-tumor immunity by vaccination with ex vivo antigen-loaded DCs. Depending on the type of DC-therapy used, long-term clinical efficacy upon DC-therapy remains restricted to a proportion of patients, likely due to lack of immunogenicity of tumor cells, presence of a stromal compartment, and the suppressive tumor microenvironment (TME), thereby leading to the development of resistance. In order to circumvent tumor-induced suppressive mechanisms and unleash the full potential of DC-therapy, considerable efforts have been made to combine DC-therapy with chemotherapy, radiotherapy or with checkpoint inhibitors. These combination strategies could enhance tumor immunogenicity, stimulate endogenous DCs following immunogenic cell death, improve infiltration of cytotoxic T lymphocytes (CTLs) or specifically deplete immunosuppressive cells in the TME, such as regulatory T-cells and myeloid-derived suppressor cells. In this review, different strategies of combining DC-therapy with immunomodulatory treatments will be discussed. These strategies and insights will improve and guide DC-based combination immunotherapies with the aim of further improving patient prognosis and care

    Nano-scale superhydrophobicity: suppression of protein adsorption and promotion of flow-induced detachment

    Get PDF
    Wall adsorption is a common problem in microfluidic devices, particularly when proteins are used. Here we show how superhydrophobic surfaces can be used to reduce protein adsorption and to promote desorption. Hydrophobic surfaces, both smooth and having high surface roughness of varying length scales (to generate superhydrophobicity), were incubated in protein solution. The samples were then exposed to flow shear in a device designed to simulate a microfluidic environment. Results show that a similar amount of protein adsorbed onto smooth and nanometer-scale rough surfaces, although a greater amount was found to adsorb onto superhydrophobic surfaces with micrometer scale roughness. Exposure to flow shear removed a considerably larger proportion of adsorbed protein from the superhydrophobic surfaces than from the smooth ones, with almost all of the protein being removed from some nanoscale surfaces. This type of surface may therefore be useful in environments, such as microfluidics, where protein sticking is a problem and fluid flow is present. Possible mechanisms that explain the behaviour are discussed, including decreased contact between protein and surface and greater shear stress due to interfacial slip between the superhydrophobic surface and the liquid

    The influence of 'significant others' on persistent back pain and work participation: a qualitative exploration of illness perceptions

    Get PDF
    Background Individual illness perceptions have been highlighted as important influences on clinical outcomes for back pain. However, the illness perceptions of 'significant others' (spouse/partner/close family member) are rarely explored, particularly in relation to persistent back pain and work participation. The aim of this study was to initiate qualitative research in this area in order to further understand these wider influences on outcome. Methods Semi-structured interviews based on the chronic pain version of the Illness Perceptions Questionnaire-Revised were conducted with a convenience sample of UK disability benefit claimants, along with their significant others (n=5 dyads). Data were analysed using template analysis. Results Significant others shared, and perhaps further reinforced, claimants' unhelpful illness beliefs including fear of pain/re-injury associated with certain types of work and activity, and pessimism about the likelihood of return to work. In some cases, significant others appeared more resigned to the permanence and negative inevitable consequences of the claimant's back pain condition on work participation, and were more sceptical about the availability of suitable work and sympathy from employers. In their pursuit of authenticity, claimants were keen to stress their desire to work whilst emphasising how the severity and physical limitations of their condition prevented them from doing so. In this vein, and seemingly based on their perceptions of what makes a 'good' significant other, significant others acted as a 'witness to pain', supporting claimants' self-limiting behaviour and statements of incapacity, often responding with empathy and assistance. The beliefs and responses of significant others may also have been influenced by their own experience of chronic illness, thus participants lives were often intertwined and defined by illness. Conclusions The findings from this exploratory study reveal how others and wider social circumstances might contribute both to the propensity of persistent back pain and to its consequences. This is an area that has received little attention to date, and wider support of these findings may usefully inform the design of future intervention programmes aimed at restoring work participation

    Presynaptic partner selection during retinal circuit reassembly varies with timing of neuronal regeneration in vivo

    Get PDF
    Whether neurons can restore their original connectivity patterns during circuit repair is unclear. Taking advantage of the regenerative capacity of zebrafish retina, we show here the remarkable specificity by which surviving neurons reassemble their connectivity upon regeneration of their major input. H3 horizontal cells (HCs) normally avoid red and green cones, and prefer ultraviolet over blue cones. Upon ablation of the major (ultraviolet) input, H3 HCs do not immediately increase connectivity with other cone types. Instead, H3 dendrites retract and re-extend to contact new ultraviolet cones. But, if regeneration is delayed or absent, blue-cone synaptogenesis increases and ectopic synapses are made with red and green cones. Thus, cues directing synapse specificity can be maintained following input loss, but only within a limited time period. Further, we postulate that signals from the major input that shape the H3 HC's wiring pattern during development persist to restrict miswiring after damage
    corecore