26 research outputs found

    Quantitative phosphoproteomics to unravel the cellular response to chemical stressors with different modes of action

    Get PDF
    Damage to cellular macromolecules and organelles by chemical exposure evokes activation of various stress response pathways. To what extent different chemical stressors activate common and stressor-specific pathways is largely unknown. Here, we used quantitative phosphoproteomics to compare the signaling events induced by four stressors with different modes of action: the DNA damaging agent: cisplatin (CDDP), the topoisomerase II inhibitor: etoposide (ETO), the pro-oxidant: diethyl maleate (DEM) and the immunosuppressant: cyclosporine A (CsA) administered at an equitoxic dose to mouse embryonic stem cells. We observed major differences between the stressors in the number and identity of responsive phosphosites and the amplitude of phosphorylation. Kinase motif and pathway analyses indicated that the DNA damage response (DDR) activation by CDDP occurs predominantly through the replication-stress-related Atr kinase, whereas ETO triggers the DDR through Atr as well as the DNA double-strand-break-associated Atm kinase. CsA shares with ETO activation of CK2 kinase. Congruent with their known modes of action, CsA-mediated signaling is related to down-regulation of pathways that control hematopoietic differentiation and immunity, whereas oxidative stress is the most prominent initiator of DEM-modulated stress signaling. This study shows that even at equitoxic doses, different stressors induce distinctive and complex phosphorylation signaling cascades.Toxicolog

    Developmental defects and male sterility in mice lacking the ubiquitin-like DNA repair gene mHR23B.

    Get PDF
    mHR23B encodes one of the two mammalian homologs of Saccharomyces cerevisiae RAD23, a ubiquitin-like fusion protein involved in nucleotide excision repair (NER). Part of mHR23B is complexed with the XPC protein, and this heterodimer functions as the main damage detector and initiator of global genome NER. While XPC defects exist in humans and mice, mutations for mHR23A and mHR23B are not known. Here, we present a mouse model for mHR23B. Unlike XPC-deficient cells, mHR23B(-/-) mouse embryonic fibroblasts are not UV sensitive and retain the repair characteristics of wild-type cells. In agreement with the results of in vitro repair studies, this indicates that mHR23A can functionally replace mHR23B in NER. Unexpectedly, mHR23B(-/-) mice show impaired embryonic development and a high rate (90%) of intrauterine or neonatal death. Surviving animals display a variety of abnormalities, including retarded growth, facial dysmorphology, and male sterility. Such abnormalities are not observed in XPC and other NER-deficient mouse mutants and point to a separate function of mHR23B in development. This function may involve regulation of protein stability via the ubiquitin/proteasome pathway and is not or only in part compensated for by mHR23A

    Deciphering the RNA landscape by RNAome sequencing

    Get PDF
    Current RNA expression profiling methods rely on enrichment steps for specific RNA classes, thereby not detecting all RNA species in an unperturbed manner. We report strand-specific RNAome sequencing that determines expression of small and large RNAs from rRNA-depleted total RNA in a single sequence run. Since current analysis pipelines cannot reliably analyze small and large RNAs simultaneously, we developed TRAP, Total Rna Analysis Pipeline, a robust interface that is also compatible with existing RNA sequencing protocols. RNAome sequencing quantitatively preserved all RNA classes, allowing cross-class comparisons that facilitates the identification of relationships between different RNA classes. We demonstrate the strength of RNAome sequencing in mouse embryonic stem cells treated with cisplatin. MicroRNA and mRNA expression in RNAome sequencing significantly correlated between replicates and was in concordance with both existing RNA sequencing methods and gene expression arrays generated from the same samples. Moreover, RNAome sequencing also detected additional RNA classes such as enhancer RNAs, anti-sense RNAs, novel RNA species and numerous differentially expressed RNAs undetectable by other methods. At the level of complete RNA classes, RNAome sequencing also identified a specific global repression of the microRNA and microRNA isoform classes after cisplatin treatment whereas all other classes such as mRNAs were unchanged. These characteristics of RNAome sequencing will significantly improve expression analysis as well as studies on RNA biology not covered by existing methods

    Predicting a local recurrence after breast-conserving therapy by gene expression profiling

    Get PDF
    INTRODUCTION: To tailor local treatment in breast cancer patients there is a need for predicting ipsilateral recurrences after breast-conserving therapy. After adequate treatment (excision with free margins and radiotherapy), young age and incompletely excised extensive intraductal component are predictors for local recurrence, but many local recurrences can still not be predicted. Here we have used gene expression profiling by microarray analysis to identify gene expression profiles that can help to predict local recurrence in individual patients. METHODS: By using previously established gene expression profiles with proven value in predicting metastasis-free and overall survival (wound-response signature, 70-gene prognosis profile and hypoxia-induced profile) and training towards an optimal prediction of local recurrences in a training series, we establish a classifier for local recurrence after breast-conserving therapy. RESULTS: Validation of the different gene lists shows that the wound-response signature is able to separate patients with a high (29%) or low (5%) risk of a local recurrence at 10 years (sensitivity 87.5%, specificity 75%). In multivariable analysis the classifier is an independent predictor for local recurrence. CONCLUSION: Our findings indicate that gene expression profiling can identify subgroups of patients at increased risk of developing a local recurrence after breast-conserving therapy

    The RECAP Test Rapidly and Reliably Identifies Homologous Recombination-Deficient Ovarian Carcinomas

    Get PDF
    Recent studies have shown that the efficacy of PARP inhibitors in epithelial ovarian carcinoma (EOC) is related to tumor-specific defects in homologous recombination (HR) and extends beyond BRCA1/2 deficient EOC. A robust method with which to identify HR-deficient (HRD) carcinomas is therefore of utmost clinical importance. In this study, we investigated the proficiency of a functional HR assay based on the detection of RAD51 foci, the REcombination CAPacity (RECAP) test, in identifying HRD tumors in a cohort of prospectively collected epithelial ovarian carcinomas (EOCs). Of the 39 high-grade serous ovarian carcinomas (HGSOC), the RECAP test detected 26% (10/39) to be HRD, whereas ovarian carcinomas of other histologic subtypes (n = 10) were all HR-proficient (HRP). Of the HRD tumors that could be sequenced, 8/9 showed pathogenic BRCA1/2 variants or BRCA1 promoter hypermethylation, indicating that the RECAP test reliably identifies HRD, including but not limited to tumors related to BRCA1/2 deficiency. Furthermore, we found a trend towards better overall survival (OS) of HGSOC patients with RECAP-identified HRD tumors compared to patients with HRP tumors. This study shows that the RECAP test is an attractive alternative to DNA-based HRD tests, and further development of a clinical grade RECAP test is clearly warranted

    Adverse outcome pathways:opportunities, limitations and open questions

    Get PDF
    Adverse outcome pathways (AOPs) are a recent toxicological construct that connects, in a formalized, transparent and quality-controlled way, mechanistic information to apical endpoints for regulatory purposes. AOP links a molecular initiating event (MIE) to the adverse outcome (AO) via key events (KE), in a way specified by key event relationships (KER). Although this approach to formalize mechanistic toxicological information only started in 2010, over 200 AOPs have already been established. At this stage, new requirements arise, such as the need for harmonization and re-assessment, for continuous updating, as well as for alerting about pitfalls, misuses and limits of applicability. In this review, the history of the AOP concept and its most prominent strengths are discussed, including the advantages of a formalized approach, the systematic collection of weight of evidence, the linkage of mechanisms to apical end points, the examination of the plausibility of epidemiological data, the identification of critical knowledge gaps and the design of mechanistic test methods. To prepare the ground for a broadened and appropriate use of AOPs, some widespread misconceptions are explained. Moreover, potential weaknesses and shortcomings of the current AOP rule set are addressed (1) to facilitate the discussion on its further evolution and (2) to better define appropriate vs. less suitable application areas. Exemplary toxicological studies are presented to discuss the linearity assumptions of AOP, the management of event modifiers and compensatory mechanisms, and whether a separation of toxicodynamics from toxicokinetics including metabolism is possible in the framework of pathway plasticity. Suggestions on how to compromise between different needs of AOP stakeholders have been added. A clear definition of open questions and limitations is provided to encourage further progress in the field

    The E3 Ubiquitin Ligase ARIH1 Protects against Genotoxic Stress by Initiating a 4EHP-Mediated mRNA Translation Arrest

    No full text
    DNA damage response signaling is crucial for genome maintenance in all organisms and is corrupted in cancer. In an RNA interference (RNAi) screen for (de)ubiquitinases and sumoylases modulating the apoptotic response of embryonic stem (ES) cells to DNA damage, we identified the E3 ubiquitin ligase/ISGylase, ariadne homologue 1 (ARIH1). Silencing ARIH1 sensitized ES and cancer cells to genotoxic compounds and ionizing radiation, irrespective of their p53 or caspase-3 status. Expression of wild-type but not ubiquitinase-defective ARIH1 constructs prevented sensitization caused by ARIH1 knockdown. ARIH1 protein abundance increased after DNA damage through attenuation of proteasomal degradation that required ATM signaling. Accumulated ARIH1 associated with 4EHP, and in turn, this competitive inhibitor of the eukaryotic translation initiation factor 4E (eIF4E) underwent increased nondegradative ubiquitination upon DNA damage. Genotoxic stress led to an enrichment of ARIH1 in perinuclear, ribosome-containing regions and triggered 4EHP association with the mRNA 5′ cap as well as mRNA translation arrest in an ARIH1-dependent manner. Finally, restoration of DNA damage-induced translation arrest in ARIH1-depleted cells by means of an eIF2 inhibitor was sufficient to reinstate resistance to genotoxic stress. These findings identify ARIH1 as a potent mediator of DNA damage-induced translation arrest that protects stem and cancer cells against genotoxic stress
    corecore