12 research outputs found

    One-stage bilateral total hip replacement using direct anterior approach via ā€žbikiniā€œ incision: a case report

    Get PDF
    Background: Osteoarthritis (OA) is a musculoskeletal condition that is affecting an increasing number of individuals due to an aging population. The aim of our case report was to present one-stage bilateral efficient direct anterior total hip replacement via ā€žbikiniā€ incision, to describe the course of the operation, as well as the advantages and the disadvantages of this procedure. Case study: A 38-year old patient, without any comorbidities, presented with severe OA of both hips. Due to co-existing OA on both joints and the patientā€™s motivation and desire for faster recovery, he underwent a one-stage bilateral hip replacement using a direct anterior approach via a ā€žbikiniā€ incision. Physical therapy began immediately after the surgery and the patient was verticalized on the first postoperative day. Eight days after the procedure, the patient was discharged from the hospital. Conclusion: One-stage total hip replacement should be considered for patients with OA of both hips to reduce the postoperative hospital stay and the need for long-term rehabilitation

    Early results of intra-articular micro-fragmented lipoaspirate treatment in patients with late stages knee osteoarthritis: a prospective study

    Get PDF
    Aim To analyze clinical and functional effects of intra-articular injection of autologous micro-fragmented lipoaspirate (MLA) in patients with late stage knee osteoarthritis (KOA). Secondary aims included classifying cell types contributing to the treatment effect, performing detailed MRIbased classification of KOA, and elucidating the predictors for functional outcomes. Methods This prospective, non-randomized study was conducted from June 2016 to February 2018 and enrolled 20 patients with late stage symptomatic KOA (Kellgren Lawrence grade III, n = 4; and IV, n = 16) who received an intra-articular injection of autologous MLA in the index knee joint. At baseline radiological KOA grade and MRI were assessed in order to classify the morphology of KOA changes. Stromal vascular fraction cells obtained from MLA samples were stained with antibodies specific for cell surface markers. Patients were evaluated at baseline and 12-months after treatment with visual analog scale (VAS), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), and Knee Injury and Osteoarthritis Outcome Score (KOOS).Results Three patients (15%) received a total knee replacement and were not followed up completely. Seventeen patients (85%) showed a substantial pattern of KOOS and WOMAC improvement, significant in all accounts. KOOS score improved from 46 to 176% when compared with baseline, WOMAC decreased from 40 to 45%, while VAS rating decreased from 54% to 82% (all P values were <0.001). MLA contained endothelial progenitor cells, pericytes, and supra-adventitial adipose stromal cells as most abundant cell phenotypes. Conclusion This study is among the first to show a positive effect of MLA on patients with late stages KOA

    Immunophenotyping of a Stromal Vascular Fraction from Microfragmented Lipoaspirate Used in Osteoarthritis Cartilage Treatment and Its Lipoaspirate Counterpart

    Get PDF
    Osteoarthritis (OA) is a degenerative joint disease accompanied by pain and loss of function. Adipose tissue harbors mesenchymal stem/stromal cells (MSC), or medicinal signaling cells as suggested by Caplan (Caplan, 2017), used in autologous transplantation in many clinical settings. The aim of the study was to characterize a stromal vascular fraction from microfragmented lipoaspirate (SVF-MLA) applied for cartilage treatment in OA and compare it to that of autologous lipoaspirate (SVF-LA). Samples were first stained using a DuraClone SC prototype tube for the surface detection of CD31, CD34, CD45, CD73, CD90, CD105, CD146 and LIVE/DEAD Yellow Fixable Stain for dead cell detection, followed by DRAQ7 cell nuclear dye staining, and analyzed by flow cytometry. In SVF-LA and SVF-MLA samples, the following population phenotypes were identified within the CD45- fraction: CD31+CD34+CD73Ā±CD90Ā±CD105Ā±CD146Ā± endothelial progenitors (EP), CD31+CD34-CD73Ā±CD90Ā±CD105-CD146Ā± mature endothelial cells, CD31-CD34-CD73Ā±CD90+CD105-CD146+ pericytes, CD31-CD34+CD73Ā±CD90+CD105-CD146+ transitional pericytes, and CD31-CD34+CD73highCD90+CD105-CD146- supra-adventitial-adipose stromal cells (SA-ASC). The immunophenotyping profile of SVF-MLA was dominated by a reduction of leukocytes and SA-ASC, and an increase in EP, evidencing a marked enrichment of this cell population in the course of adipose tissue microfragmentation. The role of EP in pericyte-primed MSC-mediated tissue healing, as well as the observed hormonal implication, is yet to be investigated

    Knee Osteoarthritis: A Review of Pathogenesis and State-Of-The-Art Non-Operative Therapeutic Considerations

    No full text
    Being the most common musculoskeletal progressive condition, osteoarthritis is an interesting target for research. It is estimated that the prevalence of knee osteoarthritis (OA) among adults 60 years of age or older is approximately 10% in men and 13% in women, making knee OA one of the leading causes of disability in elderly population. Today, we know that osteoarthritis is not a disease characterized by loss of cartilage due to mechanical loading only, but a condition that affects all of the tissues in the joint, causing detectable changes in tissue architecture, its metabolism and function. All of these changes are mediated by a complex and not yet fully researched interplay of proinflammatory and anti-inflammatory cytokines, chemokines, growth factors and adipokines, all of which can be measured in the serum, synovium and histological samples, potentially serving as biomarkers of disease stage and progression. Another key aspect of disease progression is the epigenome that regulates all the genetic expression through DNA methylation, histone modifications, and mRNA interference. A lot of work has been put into developing non-surgical treatment options to slow down the natural course of osteoarthritis to postpone, or maybe even replace extensive surgeries such as total knee arthroplasty. At the moment, biological treatments such as platelet-rich plasma, bone marrow mesenchymal stem cells and autologous microfragmented adipose tissue containing stromal vascular fraction are ordinarily used. Furthermore, the latter two mentioned cell-based treatment options seem to be the only methods so far that increase the quality of cartilage in osteoarthritis patients. Yet, in the future, gene therapy could potentially become an option for orthopedic patients. In the following review, we summarized all of the latest and most important research in basic sciences, pathogenesis, and non-operative treatment

    A 24-Month Follow-Up Study of the Effect of Intra-Articular Injection of Autologous Microfragmented Fat Tissue on Proteoglycan Synthesis in Patients with Knee Osteoarthritis

    No full text
    Osteoarthritis (OA) is a widely prevalent disease worldwide, and with an increasingly ageing society, it has become a challenge for the field of regenerative medicine. OA is a disease process involving multiple joint tissues, including those not visible on radiography, and is a complex disease process with multiple phenotypes that require evaluation by a multimodality imaging assessment. The purpose of this study was to evaluate the effect of micro-fragmented fat tissue intra-articular injection 24 months after application in two ways: Indirectly using functional magnetic resonance imaging (MRI) assessment analyzing the glycosaminoglycans (GAG) content in cartilage by means of delayed gadolinium (Gd)-enhanced magnetic resonance imaging of cartilage (dGEMRIC), as well as clinical outcome on observed level of GAG using standard orthopedic physical examination including VAS assessment. In our previous study assessing comprehensive results after 12 months, the dGEMRIC results have drawn attention. The present study explores the long-term effect of intra-articular injection of autologous microfragmented adipose tissue to host chondrocytes and cartilage proteoglycans in patients with knee OA. A prospective, non-randomized, interventional, single-center, open-label clinical trial was conducted from January 2016 to April 2018. A total of 17 patients were enrolled in the study, and 32 knees were assessed in a 12-month follow-up, but only 10 patients of them with 18 knees are included in a 24-month follow-up. The rest of the seven patients dropped out of the study 12 months after follow-up: three patients underwent knee arthroplasty, and the remaining four did not fulfil the basic criteria of 24 months involvement in the study. Surgical intervention (lipoaspiration), followed by tissue processing and intra-articular injection of the final microfragmented adipose tissue product into the affected knee(s), was performed in all patients. Patients were assessed for a visual analog scale (VAS), dGEMRIC at the baseline, three, six, 12 and 24 months after the treatment. A magnetic resonance sequence in dGEMRIC due to infiltration of the anionic, negatively-charged contrast gadopentetate dimeglumine (Gd-DTPA2) into the cartilage indicated that the contents of cartilage glycosaminoglycans significantly increased in specific areas of the treated knee joint. Our results suggest that this method of single intra-articular injection of autologous microfragmented adipose tissue improves GAG content on a significant scale, with over half of the measurements suggesting relevant improvement 24 months after intra-articular injection opposed to the expected GAG decrease over the natural course of the disease

    Early results of intra-articular micro- fragmented lipoaspirate treatment in patients with late stages knee osteoarthritis: a prospective study

    No full text
    Aim To analyze clinical and functional effects of intra-articular injection of autologous micro-fragmented lipoaspirate (MLA) in patients with late stage knee osteoarthritis (KOA). Secondary aims included classifying cell types contributing to the treatment effect, performing detailed MRI-based classification of KOA, and elucidating the predictors for functional outcomes. Methods This prospective, non-randomized study was conducted from June 2016 to February 2018 and enrolled 20 patients with late stage symptomatic KOA (Kellgren Lawrence grade III, n = 4 ; and IV, n = 16) who received an intra- articular injection of autologous MLA in the index knee joint. At baseline radiological KOA grade and MRI were assessed in order to classify the morphology of KOA changes. Stromal vascular fraction cells obtained from MLA samples were stained with antibodies specific for cell surface markers. Patients were evaluated at baseline and 12-months after treatment with visual analog scale (VAS), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), and Knee Injury and Osteoarthritis Outcome Score (KOOS). Results Three patients (15%) received a total knee replacement and were not followed up completely. Seventeen patients (85%) showed a substantial pattern of KOOS and WOMAC improvement, significant in all accounts. KOOS score improved from 46 to 176% when compared with baseline, WOMAC decreased from 40 to 45%, while VAS rating decreased from 54% to 82% (all P values were < 0.001). MLA contained endothelial progenitor cells, pericytes, and supra-adventitial adipose stromal cells as most abundant cell phenotypes. Conclusion This study is among the first to show a positive effect of MLA on patients with late stages KOA

    Early results of intra-articular micro- fragmented lipoaspirate treatment in patients with late stages knee osteoarthritis: a prospective study

    No full text
    Aim To analyze clinical and functional effects of intra-articular injection of autologous micro-fragmented lipoaspirate (MLA) in patients with late stage knee osteoarthritis (KOA). Secondary aims included classifying cell types contributing to the treatment effect, performing detailed MRI-based classification of KOA, and elucidating the predictors for functional outcomes. Methods This prospective, non-randomized study was conducted from June 2016 to February 2018 and enrolled 20 patients with late stage symptomatic KOA (Kellgren Lawrence grade III, n = 4 ; and IV, n = 16) who received an intra- articular injection of autologous MLA in the index knee joint. At baseline radiological KOA grade and MRI were assessed in order to classify the morphology of KOA changes. Stromal vascular fraction cells obtained from MLA samples were stained with antibodies specific for cell surface markers. Patients were evaluated at baseline and 12-months after treatment with visual analog scale (VAS), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), and Knee Injury and Osteoarthritis Outcome Score (KOOS). Results Three patients (15%) received a total knee replacement and were not followed up completely. Seventeen patients (85%) showed a substantial pattern of KOOS and WOMAC improvement, significant in all accounts. KOOS score improved from 46 to 176% when compared with baseline, WOMAC decreased from 40 to 45%, while VAS rating decreased from 54% to 82% (all P values were < 0.001). MLA contained endothelial progenitor cells, pericytes, and supra-adventitial adipose stromal cells as most abundant cell phenotypes. Conclusion This study is among the first to show a positive effect of MLA on patients with late stages KOA

    The Effect of Intra-articular Injection of Autologous Microfragmented Fat Tissue on Proteoglycan Synthesis in Patients with Knee Osteoarthritis

    No full text
    Osteoarthritis (OA) is one of the leading musculoskeletal disorders in the adult population. It is associated with cartilage damage triggered by the deterioration of the extracellular matrix tissue. The present study explores the effect of intra-articular injection of autologous microfragmented adipose tissue to host chondrocytes and cartilage proteoglycans in patients with knee OA. A prospective, non-randomized, interventional, single-center, open-label clinical trial was conducted from January 2016 to April 2017. A total of 17 patients were enrolled in the study, and 32 knees with osteoarthritis were assessed. Surgical intervention (lipoaspiration) followed by tissue processing and intra-articular injection of the final microfragmented adipose tissue product into the affected knee(s) was performed in all patients. Patients were assessed for visual analogue scale (VAS), delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) and immunoglobulin G (IgG) glycans at the baseline, three, six and 12 months after the treatment. Magnetic resonance sequence in dGEMRIC due to infiltration of the anionic, negatively charged contrast gadopentetate dimeglumine (Gd-DTPA2āˆ’) into the cartilage indicated that the contents of cartilage glycosaminoglycans significantly increased in specific areas of the treated knee joint. In addition, dGEMRIC consequently reflected subsequent changes in the mechanical axis of the lower extremities. The results of our study indicate that the use of autologous and microfragmented adipose tissue in patients with knee OA (measured by dGEMRIC MRI) increased glycosaminoglycan (GAG) content in hyaline cartilage, which is in line with observed VAS and clinical results
    corecore