9 research outputs found

    Base-catalyzed reactions of environmentally relevant N-chloro-piperidines. A quantum-chemical study

    Get PDF
    Electronic structure methods have been applied to calculate the gas and aqueous phase reaction energies for base-induced rearrangements of N-chloropiperidine, N-chloro-3-(hydroxymethyl)piperidine, and N-chloro-4-4-fluorophenyl)-3-(hydroxymethyl)piperidine. These derivatives have been selected as representative models for studying the chemical fate of environmentally relevant chloramines. The performance of different computational methods (MP2, MP4, QCISD, B3LYP and B2PLYP) for calculating the thermochemistry of rearrangement reactions was assessed. The latter method produces energies similar to those obtained at G3B3(+) level, which themselves have been tested against experimental results. Experimental energy barriers and enthalpies for ring inversion, nitrogen inversion and dehydrochlorination reactions in -chloropiperidine have been accurately reproduced when solvent effects have been included. It was also found that the combined use of continuum solvation models (e.g. CPCM) and explicit consideration of a single water molecule is sufficient to properly describe the water-assisted rearrangement of N-chlorinated compounds in basic media. In the case of N-chloro-4-(4-fluorophenyl)-3-(hydroxymethyl)piperidine, which represents the chlorinated metabolite of the antidepressant paroxetine, several different reactions (intramolecular addition, substitution, and elimination reactions) have been investigated. Transition state structures for these processes have been located together with minimum energy structures of conceivable products. Imine 4A is predicted to be the most stable reaction product, closely followed by imine 4B and oxazinane 8, while formation of isoxazolidine 7 is much less favourable. Calculated reaction barriers in aqueous solution are quite similar for all four processes, the lowest barrier being predicted for the formation of imine 4A

    Computational study of radicals derived from hydroxyurea and its methylated analogues.

    Get PDF
    Structural and electronic properties and chemical fate of free radicals generated from hydroxyurea (HU) and its methylated analogues N-methylhydroxyurea (NMHU) and O-methylhydroxyurea (OMHU) are of utmost importance for their biological and pharmacological effects. In this work the cis/trans conformational processes, tautomerizations, and intramolecular hydrogen and methyl migrations in hydroxyurea-derived radicals have been considered. Potential energy profiles for these reactions have been calculated using two DFT functionals (BP86 and B3LYP) and two composite models (G3(MP2)RAD and G3B3). Solvation effects have been included both implicitly (CPCM) and explicitly. It has been shown that calculated energy barriers for free radical rearrangements are significantly reduced when a single water molecule is included in calculations. In the case of HU-derived open-shell species, a number of oxygen-, nitrogen-, and carbon-centered radicals have been located, but only the O-centered radicals (e1 and z1) fit to experimental isomeric hyperfine coupling constants (hfccs) from EPR spectra. The reduction of NMHU and OMHU produces O-centered and N-centered radicals, respectively, with the former being more stable by ca. 60 kJ mol−1. The NMHU-derived radical e4 undergoes rearrangements, which can result in formation of several conceivable products. The calculated hfccs have been successfully used to interpret the experimental EPR spectra of the most probable rearranged product 10. Reduction potentials of hydroxyureas, radical stabilization energy (RSE) and bond disocciation energy (BDE) values have been calculated to compare stabilities and reactivities of different subclasses of free radicals. It has been concluded, in agreement with experiment, that reductions of biologically relevant tyrosyl radicals by HU and NMHU are thermochemically favorable processes, and that the order of reactivity of hydroxyureas follows the experimentally observed trend NMHU > HU > OMHU

    The chemical fate of paroxetine metabolites. Dehydration of radicals derived from 4-(4-fluorophenyl)-3-(hydroxymethyl)piperidine

    Get PDF
    Quantum chemical calculations have been used to model reactions which are important for understanding the chemical fate of paroxetine-derived radicals in the environment. In order to explain the experimental observation that the loss of water occurs along the (photo)degradation pathway, four different mechanisms of radical-induced dehydrations have been considered. The elimination of water from the N-centered radical cation, which results in the formation of an imine intermediate, has been calculated as the most feasible process. The predicted energy barrier (Delta G(298)(#) = 98.5 kJ mol(-1)) is within the barrier limits set by experimental measurements. All reaction intermediates and transition state structures have been calculated using the G3(MP2)-RAD composite procedure, and solvent effects have been determined using a mixed (cluster/continuum) solvation model. Several new products, which comply with the available experimental data, have been proposed. These structures could be relevant for the chemical fate of antidepressant paroxetine, but also for biologically and environmentally related substrates

    The chemical fate of paroxetine metabolites. Dehydration of radicals derived from 4-(4-fluorophenyl)-3-(hydroxymethyl)piperidine

    Get PDF
    Quantum chemical calculations have been used to model reactions which are important for understanding the chemical fate of paroxetine-derived radicals in the environment. In order to explain the experimental observation that the loss of water occurs along the (photo)degradation pathway, four different mechanisms of radical-induced dehydrations have been considered. The elimination of water from the N-centered radical cation, which results in the formation of an imine intermediate, has been calculated as the most feasible process. The predicted energy barrier (Delta G(298)(#) = 98.5 kJ mol(-1)) is within the barrier limits set by experimental measurements. All reaction intermediates and transition state structures have been calculated using the G3(MP2)-RAD composite procedure, and solvent effects have been determined using a mixed (cluster/continuum) solvation model. Several new products, which comply with the available experimental data, have been proposed. These structures could be relevant for the chemical fate of antidepressant paroxetine, but also for biologically and environmentally related substrates

    The stability of nitrogen-centered radicals

    Get PDF
    Radical stabilization energies (RSEs) for a wide variety of nitrogen-centered radicals and their protonated counterparts have been calculated at G3(MP2)-RAD and G3B3 level. The calculated RSE values can be rationalized through the combined effects of resonance delocalization of the unpaired spin, electron donation through adjacent alkyl groups or lone pairs, and through inductive electron donation/electron withdrawal. The influence of ring strain effects as well as the synergistic combination of individual substituent effects (captodatively stabilized N-radicals) have also been explored. In symmetric N-radicals the substituents may also affect the relative ordering of electronic states. In most cases the small pi-type radical (unpaired spin distribution perpendicular to the plane of the N-radical) is found to be most stable. Closed shell precursors of biological and pharmaceutical relevance{,} for which neither experimental nor theoretical results on radical stabilities exist{,} have been included

    The stability of nitrogen-centered radicals

    Get PDF
    Radical stabilization energies (RSEs) for a wide variety of nitrogen-centered radicals and their protonated counterparts have been calculated at G3(MP2)-RAD and G3B3 level. The calculated RSE values can be rationalized through the combined effects of resonance delocalization of the unpaired spin, electron donation through adjacent alkyl groups or lone pairs, and through inductive electron donation/electron withdrawal. The influence of ring strain effects as well as the synergistic combination of individual substituent effects (captodatively stabilized N-radicals) have also been explored. In symmetric N-radicals the substituents may also affect the relative ordering of electronic states. In most cases the small pi-type radical (unpaired spin distribution perpendicular to the plane of the N-radical) is found to be most stable. Closed shell precursors of biological and pharmaceutical relevance{,} for which neither experimental nor theoretical results on radical stabilities exist{,} have been included

    Recent Advances in the Synthesis of Five-Membered Cyclic Carbonates and Carbamates from Allylic or Propargylic Substrates and CO2

    No full text
    International audienceThe organic carbamates and carbonates are highly desirable compounds that have found a wide range of applications in drug design, medicinal chemistry, material science, and the polymer industry. The development of new catalytic carbonate and carbamate forming reactions, which employ carbon dioxide as a cheap, green, abundant, and easily available reagent, would thus represent an ideal substitution for existing methods. In this review, the advancements in the catalytic conversion of allylic and propargylic alcohols and amines to corresponding five-membered cyclic carbonates and carbamates are summarized. Both the metal- and the organocatalyzed methods are reviewed, as well as the proposed mechanisms and key intermediates of the illustrated carbonate and carbamate forming reactions
    corecore