53 research outputs found

    Entanglement distillation from Greenberger-Horne-Zeilinger shares

    Get PDF
    We study the problem of converting a product of Greenberger-Horne-Zeilinger (GHZ) states shared by subsets of several parties in an arbitrary way into GHZ states shared by every party. Our result is that if SLOCC transformations are allowed, then the best asymptotic rate is the minimum of bipartite log-ranks of the initial state. This generalizes a result by Strassen on the asymptotic subrank of the matrix multiplication tensor.Comment: 8 pages, v2: minor correction

    Distillation of Greenberger-Horne-Zeilinger states by combinatorial methods

    Get PDF
    We prove a lower bound on the rate of Greenberger-Horne-Zeilinger states distillable from pure multipartite states by local operations and classical communication (LOCC). Our proof is based on a modification of a combinatorial argument used in the fast matrix multiplication algorithm of Coppersmith and Winograd. Previous use of methods from algebraic complexity in quantum information theory concerned transformations with stochastic local operations and classical operation (SLOCC), resulting in an asymptotically vanishing success probability. In contrast, our new protocol works with asymptotically vanishing error.Comment: 26 pages, 2 figures; v2: updated to match published versio

    Local unitary invariants for multipartite quantum systems

    Full text link
    A method is presented to obtain local unitary invariants for multipartite quantum systems consisting of fermions or distinguishable particles. The invariants are organized into infinite families, in particular, the generalization to higher dimensional single particle Hilbert spaces is straightforward. Many well-known invariants and their generalizations are also included.Comment: 13 page

    The asymptotic spectrum of LOCC transformations

    Get PDF
    We study exact, non-deterministic conversion of multipartite pure quantum states into one-another via local operations and classical communication (LOCC) and asymptotic entanglement transformation under such channels. In particular, we consider the maximal number of copies of any given target state that can be extracted exactly from many copies of any given initial state as a function of the exponential decay in success probability, known as the converese error exponent. We give a formula for the optimal rate presented as an infimum over the asymptotic spectrum of LOCC conversion. A full understanding of exact asymptotic extraction rates between pure states in the converse regime thus depends on a full understanding of this spectrum. We present a characterisation of spectral points and use it to describe the spectrum in the bipartite case. This leads to a full description of the spectrum and thus an explicit formula for the asymptotic extraction rate between pure bipartite states, given a converse error exponent. This extends the result on entanglement concentration in [Hayashi et al, 2003], where the target state is fixed as the Bell state. In the limit of vanishing converse error exponent the rate formula provides an upper bound on the exact asymptotic extraction rate between two states, when the probability of success goes to 1. In the bipartite case we prove that this bound holds with equality.Comment: v1: 21 pages v2: 21 pages, Minor corrections v3: 17 pages, Minor corrections, new reference added, parts of Section 5 and the Appendix removed, the omitted material can be found in an extended form in arXiv:1808.0515

    The asymptotic induced matching number of hypergraphs: balanced binary strings

    Get PDF
    We compute the asymptotic induced matching number of the kk-partite kk-uniform hypergraphs whose edges are the kk-bit strings of Hamming weight k/2k/2, for any large enough even number kk. Our lower bound relies on the higher-order extension of the well-known Coppersmith-Winograd method from algebraic complexity theory, which was proven by Christandl, Vrana and Zuiddam. Our result is motivated by the study of the power of this method as well as of the power of the Strassen support functionals (which provide upper bounds on the asymptotic induced matching number), and the connections to questions in tensor theory, quantum information theory and theoretical computer science. Phrased in the language of tensors, as a direct consequence of our result, we determine the asymptotic subrank of any tensor with support given by the aforementioned hypergraphs. In the context of quantum information theory, our result amounts to an asymptotically optimal kk-party stochastic local operations and classical communication (slocc) protocol for the problem of distilling GHZ-type entanglement from a subfamily of Dicke-type entanglement

    Asymptotic tensor rank of graph tensors: beyond matrix multiplication

    Get PDF
    We present an upper bound on the exponent of the asymptotic behaviour of the tensor rank of a family of tensors defined by the complete graph on kk vertices. For k4k\geq4, we show that the exponent per edge is at most 0.77, outperforming the best known upper bound on the exponent per edge for matrix multiplication (k=3k=3), which is approximately 0.79. We raise the question whether for some kk the exponent per edge can be below 2/32/3, i.e. can outperform matrix multiplication even if the matrix multiplication exponent equals 2. In order to obtain our results, we generalise to higher order tensors a result by Strassen on the asymptotic subrank of tight tensors and a result by Coppersmith and Winograd on the asymptotic rank of matrix multiplication. Our results have applications in entanglement theory and communication complexity

    The Role of Topology in Quantum Tomography

    Full text link
    We investigate quantum tomography in scenarios where prior information restricts the state space to a smooth manifold of lower dimensionality. By considering stability we provide a general framework that relates the topology of the manifold to the minimal number of binary measurement settings that is necessary to discriminate any two states on the manifold. We apply these findings to cases where the subset of states under consideration is given by states with bounded rank, fixed spectrum, given unitary symmetry or taken from a unitary orbit. For all these cases we provide both upper and lower bounds on the minimal number of binary measurement settings necessary to discriminate any two states of these subsets
    corecore