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Abstract

We prove a lower bound on the rate of Greenberger–Horne–Zeilinger states distil-
lable from pure multipartite states by local operations and classical communication
(LOCC). Our proof is based on a modification of a combinatorial argument used in the
fast matrix multiplication algorithm of Coppersmith and Winograd. Previous use of
methods from algebraic complexity in quantum information theory concerned trans-
formations with stochastic local operations and classical communication (SLOCC),
resulting in an asymptotically vanishing success probability. In contrast, our new
protocol works with asymptotically vanishing error.

1 Introduction

When two or more parties are only allowed to operate locally and use classical commu-
nication channels (LOCC), entanglement shared between them becomes a resource. This
resource plays a central role in quantum information theory, therefore much effort has been
put into understanding the possible transformations between different kinds of entangled
states under LOCC operations.

Entanglement in bipartite pure states is well understood, and the condition for con-
vertibility becomes particularly simple in the limit of many copies [BBPS96BBPS96]. The reason
is that any LOCC transformation between such states is asymptotically reversible, there-
fore there is an essentially unique quantity measuring the amount of entanglement, the
von Neumann entropy of the two reduced states. It is common to choose the base of
logarithm to be two, which amounts to choosing the ebit to be the unit of entanglement.

The situation is much more complicated for more than two parties because of the
absence of a unique standard state into which any other (pure) state can be reversibly
transformed. Computing the conversion rates between any pair of states is certainly out of
reach. Instead of this, one can e.g. focus on a specific target state of interest and try to find
how many copies of it can be distilled from many copies of an arbitrary state. When the
target state is an ebit shared between a specified pair of states, this optimal rate is known
as the asymptotic entanglement of assistance and, for pure initial states, coincides with
the minimum entanglement entropy over the possible bipartitions separating the members

1

ar
X

iv
:1

80
5.

09
09

6v
2 

 [
qu

an
t-

ph
] 

 2
4 

Ja
n 

20
20



of the specified pair [HOW05HOW05, SVW05SVW05]. More generally, one can consider products of ebits
in some fixed configuration as in the entanglement combing protocol [YE09YE09].

Much less is known when the target state contains genuine multipartite entanglement.
The simplest such state is arguably the (multipartite) Greenberger–Horne–Zeilinger (GHZ)
state

1√
2

(|00 . . . 0〉+ |11 . . . 1〉) , (1)

the key ingredient of the quantum secret sharing protocol [HBB99HBB99]. The method of ref.
[SVW05SVW05] provides a lower bound of simultaneously distilling EPR pairs and GHZ states.
Very recently, a combination of the entanglement combing and state merging protocols
has been applied to transformations between multipartite entangled states [SME17SME17].

Our result is a new lower bound on the distillable GHZ rate (ED,GHZ, for a precise
definition see Section 3.23.2) for pure multipartite states, and can be stated in terms of the
joint probability distribution induced by measuring the state in a product orthonormal
basis. We need the concept of Shannon conditional entropy

H(X|Y )P = −
∑
y∈Y

PY (y)
∑
x∈X

PX|Y (x|y) logPX|Y (x|y), (2)

where P is the joint distribution of X and Y .

Theorem 1.1. Let |ψ〉 ∈ CI1 ⊗ · · · ⊗ CIk be a unit vector and P (i1, . . . , ik) = |ψi1...ik |2
the associated probability distribution, considered to be the joint distribution of random
variables A1, . . . , Ak. Let x1, . . . , xk ≥ 0 be such that

∀J ⊆ [k], J 6= ∅, J 6= [k] :
∑
j∈J

xj ≥ H(AJ |AJ)P .

Then ED,GHZ(|ψ〉〈ψ|) ≥ H(P )−
k∑
j=1

xj.

The proof is inspired by a recently found connection between entanglement transfor-
mations and algebraic complexity theory [CDS08CDS08, CCD+10CCD+10, YGD14YGD14, VC15VC15]. It has been
observed that complexity upper bounds on tensor powers of bilinear maps can be di-
rectly interpreted as achievability by asymptotic SLOCC transformations. In the one-shot
regime, SLOCC transformations were introduced in [BPR+00BPR+00] as a relaxation of LOCC
convertibility, while a characterisation in terms of tensor products of linear maps was
given in [DVC00DVC00]. In the asymptotic regime LOCC transformations are allowed to in-
troduce a small error, but the notion of asymptotic SLOCC convertibility requires the
final state to be reached exactly for any finite number of copies, albeit only with some
nonzero probability. For this reason, the two types of conversion rates are incomparable
in the sense that any of them can be (arbitrarily) larger than the other, depending on the
initial and target states. As a simple example, consider the family of two-qubit pure states
|ψp〉 =

√
p |00〉 +

√
1− p |11〉 (p ∈ (0, 1)): the optimal SLOCC rate of the transformation

|ψp〉 to |ψq〉 is always 1, whereas the optimal LOCC rate is h(p)/h(q), which can take any
positive value. Thus it is not possible to directly translate results in algebraic complexity
theory into bounds on asymptotic LOCC transformations. Nevertheless, we will exhibit a
nontrivial SLOCC protocol which can be upgraded to an (asymptotically perfect) LOCC
one.
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The starting point of our investigation is a combinatorial result from [CW90CW90], which
forms the basis of the upper bound 2.40363 . . . on the exponent of matrix multiplication.
The result is a lower bound on the asymptotic subrank of a specific set, which was later
generalized to a large family of sets (called tight sets) in [Str91Str91], where a matching upper
bound was also derived. One of the main ideas of the lower bound proof is intersecting (a
large power of) the subset with a product of random subsets with a carefully chosen joint
distribution, one which makes use of the tightness of the set. We investigate the effect of
choosing the distribution in a different, simpler way, which leads to a weaker bound, but
one which applies to subsets without such special structure. When applied to the support
of a state in a product basis, the asymptotic subrank serves as a lower bound on the rate
at which GHZ states can be extracted by asymptotic SLOCC transformations.

We then show how to adapt the idea to LOCC transformations. Instead of taking
the intersection of the support with subsets, which would amount to projecting out a
large portion of the state, we replace this first step with a randomly chosen measurement
and apply the rest of the protocol to the post-measurement state. At the same time, we
control the coefficients of the resulting GHZ-like states to estimate the equivalent number
of standard GHZ states.

The structure of the paper is as follows. In Section 22 we give a high-level explanation
the combinatorial result from [CW90CW90, Str91Str91] which forms the basis of the upper bound
2.40363 . . . on the exponent of matrix multiplication. We present the argument in a form
which differs from the original formulation, mainly to separate those ideas that we use in
later sections to prove our main result from those that we do not. In Section 33 we prove
our main result. Some properties of our lower bound as well as number of examples are
presented in Section 44. In Section 55 we compare the lower bound with earlier bounds from
the literature. Sections AA and BB contain the proofs of technical lemmas related to the
conversion of nonuniform GHZ-like states to approximately uniform ones.

2 The asymptotic subrank of a subset

In this section we review and generalize a technique used by Coppersmith and Winograd
[CW90CW90], and by Strassen [Str91Str91], which gives a lower bound on the asymptotic subrank of
a subset inside a Cartesian product. This puts Lemma 2.32.3 into context, which is the only
ingredient from this section to be used later.

The asymptotic subrank of such a subset can be viewed as a combinatorial analog of
the asymptotic subrank of tensors (not discussed here) as well as the distillable GHZ rate
of pure states.

Definition 2.1. Let I1, . . . , Ik be finite sets. A subset Γ ⊆ I1×· · ·×Ik is called a diagonal if
the restriction maps πj |Γ are injective for each j ∈ {1, . . . , k}, where πj : I1×· · ·×Ik → Ij
denotes the jth projection.

Let Φ ⊆ I1 × · · · × Ik arbitrary. A subset Γ ⊆ Φ is called free (for Φ) if Γ = Φ ∩
(π1(Γ)× · · · × πk(Γ)).

The subrank Q(Φ) is the size of the largest free diagonal Γ ⊆ Φ. For Φ ⊆ I1 × · · · × Ik
and Ψ ⊆ J1 × · · · × Jk we define the product Φ × Ψ ⊆ (I1 × J1) × · · · × (Ik × Jk). The
asymptotic subrank is Q˜(Φ) = limn→∞Q(Φ×n)1/n = sup Q(Φ×n)1/n.

For example, the support of an r-level tripartite generalized GHZ state in the usual
basis is {(1, 1, 1), (2, 2, 2), . . . , (r, r, r)}, which is itself a diagonal of size r, therefore has
subrank r. On the other hand, the support of the W state 1√

3
(|100〉 + |010〉 + |001〉) is

{(1, 0, 0), (0, 1, 0), (0, 0, 1)}, which has subrank 1.

3



The key steps in the Coppersmith–Winograd–Strassen lower bound method can be
described as follows:

1. Draw subsets Wj ⊆ Ij (j = 1, . . . , k) from some distribution (possibly in a correlated
way).

2. Consider the (random) graph G = (V,E) with V = Φ ∩ (W1 × · · · ×Wk) and

E =

{
{(i1, . . . , ik), (i′1, . . . , i′k)} ∈

(
V

2

)∣∣∣∣∃j : ij = i′j

}
.

3. The set Γ of isolated vertices in G is a free diagonal.

4. Bound E |Γ| from below and use E |Γ| ≤ Q(Φ).

In refs. [CW90CW90, Str91Str91] the set Φ is a truncation of a large power of the tight (see [Str91Str91,
Section 5.] for the definition) set Ψ and the joint distribution of the subsets Wj is carefully
chosen accordingly. We do not wish to make such restrictions at this point, but we will
assume the following property which simplifies the calculations considerably.

Definition 2.2. We say that the joint distribution of W1, . . . ,Wk is homogeneous for
Φ if Pr[i1, i

′
1 ∈ W1, . . . , ik, i

′
k ∈ Wk] depends on i1, i

′
1, . . . , ik, i

′
k only through the subset

J :=
{
j ∈ [k]

∣∣∣ij 6= i′j

}
when (i1, . . . , ik) ∈ Φ and (i′1, . . . , i

′
k) ∈ Φ.

The following lemma is the core of the argument. For bounding the subrank, only the
lower bound is needed and even that only in the special case when f is the constant 1
function. However, we will need the general form later, and the proof is essentially the
same.

Lemma 2.3. Let Wj ⊆ Ij be random subsets with distribution homogeneous for some
Φ ⊆ I1 × · · · × Ik. Let pJ denote the common value of Pr[i1, i

′
1 ∈ W1, . . . , ik, i

′
k ∈ Wk]

when J :=
{
j ∈ [k]

∣∣∣ij 6= i′j

}
. Consider the set Γ of isolated vertices in the random graph

G = (V,E) as introduced before. Then for any function f : Φ→ R+ the following estimates
hold: p∅ − ∑

J⊆[k]
J 6=∅,J 6=[k]

2Hmax(AJ |AJ )ΦpJ

∑
i∈Φ

f(i) ≤ E
∑
i∈Γ

f(i) ≤ p∅
∑
i∈Φ

f(i). (3)

Here the max-entropy refers to any random variable with support equal to Φ, i.e.

Hmax(AJ |AJ)Φ = log max
(ij)j∈J

|{(ij)j∈J |(i1, . . . , ik) ∈ Φ}| . (4)

Proof. For any realization of the random graph G = (V,E) the following inequalitites hold
(note that the second sum is over unordered pairs):∑

i∈V
f(i)−

∑
{i,i′}∈E

(
f(i) + f(i′)

)
≤
∑
i∈Γ

f(i) ≤
∑
i∈V

f(i). (5)

This implies that similar relations are true for the expected values, i.e.

E
∑
i∈V

f(i)− E
∑
{i,i′}∈E

(
f(i) + f(i′)

)
≤ E

∑
i∈Γ

f(i) ≤ E
∑
i∈V

f(i). (6)
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The first sum can be computed as

E
∑
i∈V

f(i) =
∑
i∈Φ

Pr[i1 ∈W1, . . . , ik ∈Wk]f(i) =
∑
i∈Φ

p∅f(i), (7)

while the second one can be bounded as

E
∑
{i,i′}∈E

(
f(i) + f(i′)

)
=

∑
{i,i′}∈(Φ

2)
∃j:ij=i′j

Pr[i1, i
′
1 ∈W1, . . . , ik, i

′
k ∈Wk]

(
f(i) + f(i′)

)

=
∑
i∈Φ

∑
i′∈Φ\{i}
∃j:ij=i′j

Pr[i1, i
′
1 ∈W1, . . . , ik, i

′
k ∈Wk]f(i)

=
∑
i∈Φ

∑
J⊆[k]

J 6=∅,J 6=[k]

∑
i′∈Φ

{j|ij 6=i′j}=J

Pr[i1, i
′
1 ∈W1, . . . , ik, i

′
k ∈Wk]f(i)

=
∑
J⊆[k]

J 6=∅,J 6=[k]

∑
i∈Φ

∑
i′∈Φ

{j|ij 6=i′j}=J

pJf(i)

≤
∑
J⊆[k]

J 6=∅,J 6=[k]

∑
i∈Φ

2Hmax(AJ |AJ )ΦpJf(i).

(8)

The second equality uses that the sum over unordered pairs is half the sum over distinct
ordered pairs, and that the sum of f(i) is equal to the sum of f(i′). In the next step the
sum over i′ is split according to the location of the components shared with i.

By construction, Γ is a free diagonal in Φ. The expected size of Γ is a lower bound on
the maximum size of the free diagonal. Applying the lower bound of Lemma 2.32.3 for the
function f(i) = 1 leads to the estimate

Q(Φ) ≥ |Φ|

p∅ − ∑
J⊆[k]

J 6=∅,J 6=[k]

2Hmax(AJ |AJ )ΦpJ

 . (9)

For lower bounding the asymptotic subrank, one chooses Φ = Ψ×n ∩ (TnP1
× · · · × TnPk)

for some type classes where Pj has a limit. In such a setting the conditional max-entropy
grows linearly. Note also that log |Φ| = Hmax(A[k]|A∅)Φ.

Lemma 2.4. Let Ψ ⊆ I1 × · · · × Ik and P ∈ P(Ψ) (the set of probability distributions
on Ψ). Let Φ(n) = Ψ×n ∩ (Tn

P
(n)
1

× · · · × Tn
P

(n)
k

) for some types P (n) ∈ Pn(Ψ) such that

P (n) → P . Then

hJ := lim
n→∞

1

n
Hmax(AJ |AJ)Φ(n) = max

Q∈P(Ψ)
∀j:Qj=Pj

H(AJ |AJ)Q. (10)

Proof. Φ(n) is a disjoint union of type classes

Φ(n) =
⋃
Q

TnQ (11)

5



where Q ∈ Pn(Ψ) such that Qj = P
(n)
j for all j. The exponentiated max-entropy is

monotone in the support and subadditive under taking unions, therefore

max
Q

Hmax(AJ |AJ)TnQ ≤ Hmax(AJ |AJ)Φ(n) ≤ max
Q

Hmax(AJ |AJ)TnQ + log |Pn(Ψ)| (12)

Consider the projection (I1 × · · · × Ik)×n → (
∏
j∈J Ij)

×n. This map is equivariant under
the Sn action permuting the factors. Its restriction to TnQ is onto the set TnQJ

, where Sn
acts transitively. Therefore

Hmax(AJ |AJ)TnQ = log
|TnQ|
|TnQJ |

, (13)

so

nH(AJ |AJ)Q − log |Pn(Ψ)| ≤ Hmax(AJ |AJ)TnQ ≤ nH(AJ |AJ)Q + log |Pn(Ψ)|. (14)

The claim follows by continuity and using log |Pn(Ψ)| = o(n).

The following example was the main motivation for our work, but it is not necessary
for understanding our results. The reader may wish to skip to Example 2.62.6, which is
simpler and more similar to our main theorem.

Example 2.5 (Asymptotic subrank of tight sets, k = 3). This example is by Strassen
from ref. [Str91Str91], based on the ideas of ref. [CW90CW90]. We present it in a different but
equivalent form and omit some details.

Let Ψ ⊆ I1 × I2 × I3 be tight, P ∈ Pn(Ψ) and take a sequence P (n) ∈ Pn(Ψ) let
Φ(n) = Ψ×n ∩ (Tn

P
(n)
1

× Tn
P

(n)
2

× Tn
P

(n)
3

). Without loss of generality assume that P has

maximal entropy given its marginal distributions. Then

|Φ(n)| = 2nH(P )+o(n) (15a)

Hmax(Aj |Aj)Φ(n) = 0 (15b)

Hmax(Aj |Aj)Φ(n) = n (H(P )−H(Pj)) + o(n) (15c)

by Lemma 2.42.4 and tightness.
For a large prime M ∈ N, draw aj : I×nj → ZM uniformly from the space of triples of

functions satisfying a1(i1) + a2(i2) = 2a3(i3) for all (i1, i2, i3) ∈ Φ(n). Let S ⊆ ZM be a
subset of {0, 1, . . . , M−1

2 } without three-term arithmetic progressions, and let Wj = a−1
j (S).

It can be shown that the joint distribution is homogeneous for Φ(n). More precisely,

p∅ =
|S|
M2

and p{1,2} = p{1,3} = p{2,3} =
|S|
M3

(16)

Choose M = 2n(H(P )−min{H(P1),H(P2),H(P3)})+o(n) and let S be as large as possible. Then
|S| = M1−o(1) as shown in ref. [SS42SS42]. Inserting these as well as the asymptotics from
(1515) into (99) gives

Q(Ψ×n) ≥ Q(Φ(n))

≥ |Φ(n)|
(
|S|
M2
− 2o(n)

(
2n(H(P )−H(P1)) + 2n(H(P )−H(P2)) + 2n(H(P )−H(P3))

) |S|
M3

)
≥ |Φ(n)| |S|

M2

(
1− 2n(H(P )−min{H(P1),H(P2),H(P3)})+o(n) 1

M

)
= 2nH(P )−(n(H(P )−min{H(P1),H(P2),H(P3)})+o(n))

= 2nmin{H(P1),H(P2),H(P3)}+o(n),

6



(17)

which implies log Q˜(Ψ) ≥ min{H(P1), H(P2), H(P3)}.

Example 2.6. Let Φ ⊆ I1 × · · · × Ik be arbitrary and choose W1, . . . ,Wk by including in
Wj each element of Ij with probability qj, independently of all other choices. Then

pJ = q1q2 · · · qk
∏
j∈J

qj , (18)

where the first k factors are the probabilities of the (independent) events that ij ∈ Wj,
while the remaining ones correspond to i′j ∈Wj for j ∈ J . Therefore

Q(Φ) ≥ |Φ|q1q2 · · · qk

1−
∑
J⊆[k]

J 6=∅,J 6=[k]

2Hmax(AJ |AJ )Φ+
∑
j∈J log qj

 . (19)

Now let Ψ ⊆ I1×· · ·×Ik be arbitrary, P ∈ P(Ψ) and Φ(n) = Ψ×n∩(Tn
P

(n)
1

×· · ·×Tn
P

(n)
k

)

for some distributions P (n) ∈ Pn(Ψ) converging to P . Let hJ be as in Lemma 2.42.4 and
choose qj as qj = 2−nxj for some real numbers xj > 0. Then

Q(Ψ×n) ≥ Q(Φ(n)) ≥ 2n(h[k]−
∑k
j=1 xj)+o(n)

1−
∑
J⊆[k]

J 6=∅,J 6=[k]

2n(hJ−
∑
j∈J xj)+o(n)

 . (20)

As long as hJ <
∑

j∈J xj for each subset J (except for ∅ or [k]), the sum in the second
factor of (2020) goes to 0 as n→∞. If this holds, then we get the estimate

log Q˜(Ψ) ≥ 1

n
log Q(Ψ×n) ≥ h[k] −

k∑
j=1

xj . (21)

3 Distillation of asymptotically perfect GHZ states with
LOCC

3.1 Proof strategy

In this section we prove our main result (Theorem 1.11.1), a lower bound on the multiparty
distillable entanglement (ED,GHZ) of an arbitrary pure state, which can be seen as an
analog of Example 2.62.6.

Let |ϕ〉 ∈ H1⊗· · ·⊗Hk with finite dimensional Hilbert spaces Hj , assume that ‖|ϕ〉‖ =
1. Choose an orthonormal basis in each of the Hilbert spaces (henceforth identified as
Hj ' CIj ), and let Φ = supp |ϕ〉 ⊆ I1× · · ·× Ik be the support. The methods of Section 22
can be applied to extract a generalized GHZ state if a local restriction to a subset W
is interpreted as performing a two-outcome measurement with projections ΠW , I − ΠW ,
where

ΠW =
∑
i∈W
|i〉〈i| . (22)

7



This leads to a generalized GHZ state of rank Q(Φ), but the success probability may be
very low and there is no control on the coefficients of the resulting state, i.e. we only get
an asymptotic SLOCC transformation. Our goal in this section is to improve the protocol
such that the success probability is close to 1.

To understand the reason for the loss of probability, first note that the randomized
construction from Section 22 actually gives rise to a two-step protocol. In the first step
the parties project onto the subspaces generated by W1, . . . ,Wk, while in the second step
they project again onto π1(Γ), . . . , πk(Γ). Suppose for a moment that the magnitude of
the nonzero coefficients of |ϕ〉 are the same (this is approximately true in a precise sense
for e.g. large tensor powers), so that the success probability is proportional to the number
of coefficients not projected out. Examining the bounds of Lemma 2.32.3, one can see that
when the pJ (J 6= ∅) are sufficiently small, then the size of Γ is essentially the same as
that of supp |ϕ〉 ∩ (W1 × · · · ×Wk). Thus the probability of failure in the second step is
negligible.

In order to achieve high probability in the first step, we replace the projection onto a
subspace with a measurement with respect to a partition of the set of basis states. Let us

choose set partitions (Wj,mj )
Mj

mj=1 of Ij . For each m = (m1, . . . ,mk) ∈ [M1] × · · · × [Mk]

consider the graphs Gm = (Vm, Em) with Vm = Φ ∩ (W1,m1 × · · · ×Wk,mk) and

Em = E ∩
(
Vm
2

)
, (23)

i.e. two elements in the support are adjacent if they share at least one coordinate. Let
Γm be the set of isolated vertices in Gm. We use the following improved protocol.

1. At site j perform a measurement according to the pairwise orthogonal projections

Πj,mj =
∑

i∈Wj,mj

|i〉〈i| . (24)

2. If the outcomes are m = (m1, . . . ,mk), then the resulting state has support Vm,
which has a free diagonal Γm. Extract this diagonal by measuring the local projec-
tions ∑

i∈πj(Γm)

|i〉〈i| . (25)

3. If every measurement is succesful, then the resulting state is a generalized GHZ
state.

If the parties wish to distill (standard) GHZ states from many copies, then after running
the above protocol many times, the obtained states can be converted into GHZ states
at a rate given by the von Neumann entropy of its reduced states, averaged over the
measurement outcomes. One may think of this expected entropy as the asymptotic value
of the ensemble.

Our goal is to show that a randomly chosen k-tuple of partitions leads to a good esti-
mate on the asymptotic value of the diagonals. We will work explicitly with mixtures of
pairwise orthogonal generalized GHZ states (a parameterization in terms of joint distri-
butions is introduced below) to represent the extracted diagonal. The asymptotic value
of such a state is given by the Shannon conditional entropy.

However, as we have already seen in Examples 2.52.5 and 2.62.6, it can be advantageous
to apply the protocol to a state (subset) which is not exactly a power in order to get

8



the best asymptotic bound. In the case of subrank, the high power was first intersected
with a product of type classes, which is clearly not affordable in the present case as it
would already lead to an asymptotically vanishing success probability. One could intersect
instead with typical subsets corresponding to the marginals, but it is possible to do better,
since we allow approximate transformations. The conditional max-entropies appearing in
the lower bound in Lemma 2.32.3 can be lowered to approximately the Shannon conditional
entropy if we work with a nearby state instead.

One proof strategy would be to derive a lower bound on the Shannon conditional en-
tropy (fairly simple using Lemma 2.32.3) and then use the asymptotic equipartition property
(AEP) to get an asymptotic statement. The difficulty is that if we apply the protocol to
a state deviating slightly from |ψ〉〈ψ|⊗n and consider many copies of the resulting state,
then a qualitative AEP is not useful since the small error gets amplified as we take more
and more copies. It is possible to remedy the situation with a quantitative form of the
AEP (e.g. the one from [HR11HR11]), but this approach leads to a fairly complicated proof
and no useful single-shot bound.

Instead, we derive a lower bound on the (smooth) conditional min-entropy, which
governs the number of GHZ states that can be (approximately) extracted in a one-shot
setting (see Lemma B.2B.2 for a precise statement). Since its definition involves an optimiza-
tion over the measurement outcomes, estimating it directly in such a probabilistic setting
seems difficult. To circumvent this problem, we use the conditional Rényi entropy as an
intermediate quantity, which is more convenient to use. In particular, the expected value
can again be estimated using Lemma 2.32.3.

It is conceivable that with some probability (over the choice of the random set par-
titions) the conditional min-entropy itself is large, which would lead to our result more
directly. However, proving this (if true) would likely involve a measure concentration
argument which relies on some strong independence property of the randomly chosen
partitions. In contrast, our proof assumes only a homogeneity property (Definition 2.22.2),
which is a condition involving at most 2kth moments (of the indicator functions of subset
memberships), therefore works for a large class of joint distributions.

3.2 Notations

We let S≤(H) = {ρ ∈ B(H)|ρ ≥ 0,Tr ρ ≤ 1} be the set of subnormalized states on the
Hilbert space H, while the set of normalized states is S(H) = {ρ ∈ B(H)|ρ ≥ 0,Tr ρ = 1}.
For ρ, σ ∈ S≤(H), the purified distance is defined as D(ρ, σ) =

√
1− F (ρ, σ)2, where

F (ρ, σ) =
√

(1− Tr ρ)(1− Trσ) + Tr

√
σ1/2ρσ1/2, (26)

is the generalized fidelity [TCR10TCR10, Definitions 2. and 4.]. The closed ε-ball around a state
ρ is Bε(ρ) = {ρ′ ∈ S≤(H)|D(ρ, ρ′) ≤ ε}. We will also write ρ ≈ε σ if D(ρ, σ) ≤ ε.

Probability distributions on a finite set X will be identified with those states on CX
which are diagonal in the standard basis. The diagonal elements in S≤(CX ) will be denoted
by P≤(X ). When considering probability distributions, the ε-ball is understood to be
Bε(P ) = {P ′ ∈ P≤(X )|D(P, P ′) ≤ ε}.

For multipartite states ρ ∈ S≤(H1 ⊗ · · · ⊗ Hk) and σ ∈ S≤(K1 ⊗ · · · ⊗ Kk) we write

ρ
LOCC−−−−→ε σ if there is a trace-nonincreasing LOCC channel Λ such that Λ(ρ) ∈ Bε(σ),

while ρ
LOCC−−−−→ σ means that there is a Λ such that Λ(ρ) = σ. Note in particular that

ρ ≈ε σ implies ρ
LOCC−−−−→ε σ, since the identity is an LOCC channel. Trace-nonincreasing

channels are contractions with respect to the purified distance, therefore the relations
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LOCC−−−−→ε enjoy a transitivity-like property:

(ρ
LOCC−−−−→ε1 σ and σ

LOCC−−−−→ε2 τ) =⇒ (ρ
LOCC−−−−→ε1+ε2 τ). (27)

We define the distillable entanglement as

ED,GHZ(ρ) = lim
ε→0

lim sup
n→∞

max

{
N

n

∣∣∣∣ρ⊗n LOCC−−−−→ε GHZ⊗N
}
. (28)

For joint distributions PXY ∈ P(X × Y), one of the several different notions of the
conditional Rényi entropy is defined as [Ari77Ari77] (see also [Tom15Tom15, Definition 5.2.])

H↑α(X|Y )P = sup
Q∈P(Y)

1

1− α
log

∑
x∈X
y∈Y

PXY (x, y)αQ(y)1−α

 . (29)

3.3 Proof of the main result

The protocol explained above leads to a random GHZ-like state. We find it convenient
to work with such an output ensemble as a mixed state where the different outcomes are
distinguished by classical flags, available to every party. First we define a parameterization
of such mixtures by joint distributions.

Definition 3.1. For a nonnegative function PXY : X ×Y → R+ where X and Y are finite
sets, we define the unnormalized state

GHZPXY =
∑
y∈Y
x,x′∈X

√
PXY (x, y)PXY (x′, y)

∣∣(xy) . . . (xy)
〉〈

(x′y) . . . (x′y)
∣∣ (30)

on the Hilbert space
(
CX×Y

)⊗k
. States of this form will be referred to as random GHZ

states.
A distribution P ∈ P(X ) can be identified with one on X ×{0}, and the corresponding

(pure) generalized GHZ state will be denoted by GHZP . We will write GHZ to mean GHZP
with P the uniform distribution on X = {0, 1}.

The role of X and Y in the definition is not symmetric, but reflects the quantum-
classical splitting of the state. The second marginal PY (if present) encodes the weights
in the classical mixture, while the conditional states are pure generalized GHZ states with
coefficients given by

√
PX|Y=y.

Asymptotically, GHZPXY is equivalent to H(X|Y )P copies of the GHZ state. In the
single shot regime, the Shannon entropy is not meaningful, but the Rényi entropies with
α > 1 can be used to bound the number of GHZ states that can be approximately extracted
from GHZPXY . This is made precise in the following lemma (the proof is in Section BB).

Lemma 3.2. For any PXY ∈ P(X×Y), ε ∈ (0, 1) and α > 1 the relation GHZPXY
LOCC−−−−→ε

GHZ⊗N holds with

N =

⌊
H↑α(X|Y )P −

(
1 +

1

α− 1

)
log

10

ε2

⌋
(31)
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Lemma 3.3. Let |ϕ〉 be a unit vector in CI1⊗· · ·⊗CIk , let (Wj,mj )
Mj

mj=1 a partition of Ij for

j = 1, . . . , k, and let Γm = Γm1...mk be a free diagonal in (supp |ϕ〉)∩(W1,m1×· · ·×Wk,mk),
and let R ∈ P(Y) be a “reference” distribution with Y = ([M1]× · · · × [Mk]) ∪ {∗}. Then
for any α > 1 there exists a probability distribution PXY on X ×Y (for some finite set X )

such that |ϕ〉〈ϕ| LOCC−−−−→ GHZPXY and

H↑α(X|Y )P ≥
1

1− α
log

[∑
m

∑
i∈Γm

|ϕi|2αR(m)1−α +

(
1−

∑
m

∑
i∈Γm

|ϕi|2
)α

R(∗)1−α

]
(32)

Proof. We use the protocol explained above. For each j ∈ [k], the jth party performs a
measurement with operators

Πj,mj =
∑

i∈Wj,mj

|i〉〈i| , (33)

and broadcasts the outcome mj to all the other parties. This results in the state∑
m

(Π1,m1 ⊗ · · · ⊗Πk,mk) |ϕ〉〈ϕ| (Π1,m1 ⊗ · · · ⊗Πk,mk)⊗ |mm. . .m〉〈mm. . .m| . (34)

In the next step, every party performs a two-outcome measurement conditioned on the
measurement result m. One of the operators at party j is∑

i∈Γm

|πj(i)〉〈πj(i)| , (35)

associated with the outcome “success”, while the other outcome is interpreted as “failure”.
Γm is a free diagonal in the support of the conditional state, therefore if every measurement
is successful, then after applying the local partial isometries∑

i∈Γm

|i〉〈πj(i)| , (36)

the parties end up with a generalized GHZ state. The phases of the coefficients can now be
adjusted with a diagonal unitary applied by any of the parties. From now on we assume
that the resulting coefficients are nonnegative real numbers. In this case, they keep the
flag m and the protocol is finished. Otherwise, if any of the measurements fails, they
discard the measurement result and prepare the separable state

|00 . . . 0〉〈00 . . . 0| ⊗ |∗ ∗ . . . ∗〉〈∗ ∗ . . . ∗| , (37)

where the second factor represents the new value of the flag. The protocol clearly imple-

ments the transformation |ϕ〉〈ϕ| LOCC−−−−→ GHZPXY where X = (I1 × · · · × Ik) ∪ {0}, and
P ∈ P(X × Y) is defined as

PXY (x, y) =


|ϕx|2 if y ∈ [M1]× · · · × [Mk] and x ∈ Γy

1−
∑

m

∑
i∈Γm

|ϕi|2 if y = ∗ and x = 0

0 otherwise.

(38)

Finally, H↑α(X|Y )P is defined as a supremum over distributions on Y, therefore any
given R ∈ P(Y) provides a lower bound as stated.
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Now we can prove the single-shot form of our main theorem.

Theorem 3.4. Let |ϕ〉 ∈ CI1 ⊗ · · · ⊗ CIk be a unit vector and Q(i1, . . . , ik) = |ϕi1...ik |2
the associated probability distribution, considered to be the joint distribution of random
variables A1, . . . , Ak. Let M1, . . . ,Mk ≥ 1 be integers and define

∆ = −k + min
J⊆[k]

J 6=∅,J 6=[k]

∑
j∈J

logMj −Hmax(AJ |AJ)Q

 . (39)

Then for any ε ∈ (0, 1) and α > 1 the relation |ϕ〉〈ϕ| LOCC−−−−→ε GHZ⊗N holds with

N =

⌊
α

1− α
log
(

2
1−α
α (Hα(Q)−

∑k
j=1 logMj) + 2−∆/α

)
−
(

1 +
1

α− 1

)
log

10

ε2

⌋
. (40)

Proof. For each j ∈ [k] choose the partition (Wj,mj )
Mj

mj=1 randomly in the following way:

for each element in Ij , draw a label uniformly at random from [Mj ] independently of all
other choices, and let Wj,mj be the set of elements having label mj . Let Vm = (supp |ϕ〉)∩
(W1,m1 × · · · × Wk,mk) (where m = (m1, . . . ,mk)), and consider the set Γm of isolated
vertices in the graph Gm = (Vm, Em), where the edges are the colliding pairs. We will
use Lemma 3.33.3 with these partitions and diagonals and with the probability distribution
R(m) = (1 − r)(M1M2 · · ·Mk)

−1, R(∗) = r for some r ∈ (0, 1) chosen later. In the
following we derive a lower bound on the mean of the right hand side of (3232). Note that
for any m the joint distribution of (W1,m1 , · · · ,Wk,mk) is homogeneous for supp |ϕ〉 with
pJ = (M1 · · ·Mk)

−1
∏
j∈JM

−1
j .

First note that x 7→ − 1
α−1 log x is convex and decreasing, therefore it is enough to find

an upper bound on the expected value of its argument,

∑
m

∑
i∈Γm

Q(i)α
(

1− r
M1M2 · · ·Mk

)1−α
+

(
1−

∑
m

∑
i∈Γm

Q(i)

)α
r1−α. (41)

For the first term, we use the upper bound from Lemma 2.32.3 (with Φ = supp |ϕ〉 and
f(i) = Q(i)α):

E
∑
m

∑
i∈Γm

Q(i)α
(

1− r
M1M2 · · ·Mk

)1−α
=

(
1− r

M1M2 · · ·Mk

)1−α∑
m

E
∑
i∈Γm

Q(i)α

≤
(

1− r
M1M2 · · ·Mk

)1−α∑
m

p∅
∑

i∈supp|ϕ〉

Q(i)α

=

(
1− r

M1M2 · · ·Mk

)1−α ∑
i∈supp|ϕ〉

Q(i)α

= (1− r)1−α2(1−α)(Hα(Q)−
∑k
j=1 logMj).

(42)

To bound the second term, we use that xα ≤ x (when x ∈ [0, 1]) to get

E

(
1−

∑
m

∑
i∈Γm

Q(i)

)α
r1−α ≤ r1−α E

(
1−

∑
m

∑
i∈Γm

Q(i)

)

= r1−α

(
1−

∑
m

E
∑
i∈Γm

Q(i)

)
,

(43)
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and the lower bound from Lemma 2.32.3 (with f(i) = Q(i)), which implies

E
∑
i∈Γm

Q(i) ≥ 1

M1M2 · · ·Mk

1−
∑
J⊆[k]

J 6=∅,J 6=[k]

2Hmax(AJ |AJ )Q−
∑
j∈J logMj

 ∑
i∈supp|ϕ〉

Q(i)

≥ 1

M1M2 · · ·Mk
(1− 2−∆).

(44)

Here we used that 2k is an upper bound on the number of subsets, the definition of ∆
and that

∑
iQ(i) = 1. Next we combine eqs. (4343) and (4444), using that the m takes

M1M2 · · ·Mk different values:

E

(
1−

∑
m

∑
i∈Γm

Q(i)

)α
r1−α ≤ r1−α2−∆. (45)

By eqs. (4242) and (4545), the expected value of (4141) is upper bounded by

(1− r)1−α2(1−α)(Hα(Q)−
∑k
j=1 logMj) + r1−α2−∆, (46)

therefore there exists a realization of the random variables achieving a value which does
not exceed this bound. According to Lemma 3.33.3, there is a probability distribution PXY

such that |ϕ〉〈ϕ| LOCC−−−−→ GHZPXY and

H↑α(X|Y )P ≥
1

1− α
log
(

(1− r)1−α2(1−α)(Hα(Q)−
∑k
j=1 logMj) + r1−α2−∆

)
. (47)

We choose r optimally (as can be seen by differentiation or observing that the right hand
side itself is a Rényi divergence) as

r =
2−∆/α

2
1−α
α (Hα(Q)−

∑k
j=1 logMj) + 2−∆/α

, (48)

which leads to the bound

H↑α(X|Y )P ≥
α

1− α
log
(

2
1−α
α (Hα(Q)−

∑k
j=1 logMj) + 2−∆/α

)
(49)

for some P . Lemma 3.23.2 implies that GHZPXY
LOCC−−−−→ε GHZ⊗N , therefore

|ϕ〉〈ϕ| LOCC−−−−→ε GHZ⊗N . (50)

Corollary 3.5. Using the same notations as in the statement of Theorem 3.43.4, assume

∆ > 0 and Hmin(Q) >
∑k

j=1 logMj. Then for any ε ∈ (0, 1) the relation |ϕ〉〈ϕ| LOCC−−−−→ε

GHZ⊗N holds with some N satisfying

N ≥

Hmin(Q)−
k∑
j=1

logMj

(1− 1

∆

)
−

(
2 +

∑k
j=1 log |Ij |

∆

)
log

10

ε2
. (51)
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Proof. The right hand side of (4040) is an increasing function of the entropy of Q, so it gets
smaller if we replace the entropy by Hmin(Q). Using the abbreviation h = Hmin(Q) −∑k

j=1 logMj , set

α = 1 +
∆

h
. (52)

Then the logarithm in (4040) becomes

log
(

2
1−α
α
h + 2−∆/α

)
= 1− ∆

α
. (53)

We get the lower bound

N =

⌊
α

1− α
log
(

2
1−α
α (Hα(Q)−

∑k
j=1 logMj) + 2−∆/α

)
−
(

1 +
1

α− 1

)
log

10

ε2

⌋
≥ α

1− α

(
1− ∆

α

)
−
(

1 +
1

α− 1

)(
log

10

ε2

)
− 1

= h

(
1− 1

∆

)
−
(

1 +
h

∆

)(
log

10

ε2

)
− 2

≥ h
(

1− 1

∆

)
−

(
1 +

∑k
j=1 log |Ij |

∆

)(
log

10

ε2

)
− 2

≥ h
(

1− 1

∆

)
−

(
2 +

∑k
j=1 log |Ij |

∆

)(
log

10

ε2

)
,

(54)

in the last two steps using h ≤ Hmin(Q) ≤
∑k

j=1 log |Ij | and log 10
ε2
≥ log 10 > 2.

The asymptotic statement follows by a standard argument involving the asymptotic
equipartition property.

Proof of Theorem 1.11.1. There is nothing to prove if H(P ) −
∑k

j=1 xj ≤ 0. Otherwise, let
ε ∈ (0, 1) and δ > 0 small enough, and define for every (large) n ∈ N the jointly typical
set T n to be the set of n-tuples (i1, . . . , in) ∈ (I1 × · · · × Ik)n such that for every subset
J ⊆ [k] the inequality∣∣∣∣∣H(AJ)P −

1

n

n∑
m=1

logPAJ ((imj)j∈J)

∣∣∣∣∣ ≤ δ +
1

n
log(1− ε) (55)

holds. Let |ϕ〉 ∈ (CI1 ⊗ · · · ⊗ CIk)⊗n be the vector with components

ϕi1...in =


1√

P⊗n(Tn)

∏n
m=1 ψin if i1 . . . in ∈ Tn

0 otherwise.
(56)

By the asymptotic equipartition property (see e.g. [CT12CT12, Theorem 7.6.1])

lim
n→∞

D(
∣∣ψ⊗n〉〈ψ⊗n∣∣ , |ϕ〉〈ϕ|) = 0. (57)

In particular, for sufficiently large n the distance is less than ε. By its definition, the
following inequalities hold:

∀J ⊆ [k] : Hmax(AJ |AJ)Φ′ ≤ n(H(AJ |AJ)Ψ + δ) (58)

Hmin(Φ′) ≥ n(H(Ψ)− δ). (59)
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We use Corollary 3.53.5 with the vector |ϕ〉 (so that Q(i) = |ϕi|2) and Mj = d2n(xj+2δ)+ke
(the role of the term k is to cancel the −k in the definition of ∆). Then for any J ⊆ [k]
such that J 6= ∅, J 6= [k]∑

j∈J
logMj −Hmax(AJ |AJ)− k ≥

∑
j∈J

(n(xj + 2δ) + k)−Hmax(AJ |AJ)Q − k

≥ 2nδ + n
∑
j∈J

xj − n(H(AJ |AJ)P + δ)

≥ nδ,

(60)

therefore ∆ ≥ nδ. On the other hand,

Hmin(Q)−
k∑
j=1

logMj ≥ n(H(P )− δ)−
k∑
j=1

(n(xj + 2δ) + k)− k

= n

H(P )−
k∑
j=1

xj − (2k + 1)δ

− k(k + 1).

(61)

Using (5151) we conclude that |ψ〉〈ψ|⊗n LOCC−−−−→2ε GHZ⊗N where

N ≥

n
H(P )−

k∑
j=1

xj − (2k + 1)δ

− k(k + 1)

 (1− 1

nδ
)

−

(
2 +

∑k
j=1 log |Ij |

δ

)
log

10

ε2
. (62)

Letting n→∞ this gives the lower bound

lim inf
n→∞

N

n
≥ H(P )−

k∑
j=1

xj − (2k + 1)δ. (63)

Since this holds for any ε ∈ (0, 1), we also get

ED,GHZ(|ψ〉〈ψ|) ≥ H(P )−
k∑
j=1

xj − (2k + 1)δ. (64)

Finally, the inequality is true for any δ > 0, therefore

ED,GHZ(|ψ〉〈ψ|) ≥ H(P )−
k∑
j=1

xj . (65)

Remark 3.6. The one-shot result can be formulated in such a way that the resulting
state is a pure GHZ state with high probability and the parties have access to a classical
flag telling whether the transformation succeeded. That is, the protocol implements an
exact LOCC transformation to (1 − o(1)) GHZ⊗N with essentially the same N as before.
To see this, one needs an exact probabilistic version of Lemma 3.23.2, which also follows
from Nielsen’s theorem. However, in the asymptotic result the transformation becomes
approximate because the projection onto the jointly typical subspace cannot be implemented
by LOCC.
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4 Evaluation of the optimal bound

To get the best possible bound in Theorem 1.11.1 or in Example 2.62.6, one needs to minimize
the sum x1 + · · ·+ xk subject to the respective constraints. Introducing hJ = H(AJ |AJ)
(respectively using the definition in Lemma 2.42.4), one is lead to the following linear program:

Problem 1 (Primal). Minimize

k∑
j=1

xj subject to ∀J ⊆ [k], J 6= ∅, J 6= [k] :
∑
j∈J

xj ≥ hJ .

This linear program is clearly feasible and bounded, e.g. xj = maxJ hJ satisfies
the constraints and for every partition {J1, . . . , Jr} of [k] every feasible point satisfies∑k

j=1 xj ≥
∑r

i=1 hJi . Problem 11 is an example of a covering linear program. The dual
problem is the following (packing) problem:

Problem 2 (Dual). Maximize
∑
J⊆[k]

J 6=∅,J 6=[k]

hJyJ subject to ∀j :
∑
J3j

yJ ≤ 1, ∀J : yJ ≥ 0.

By strong duality, the optimal values of both programs are equal to each other. The
advantage of the dual formulation is that the feasible region does not depend on the
parameters hJ , therefore in principle one can find every vertex for a given k and write
down the optimal value as the maximum of a finite number of linear combinations of the
parameters. Note that hJ ≥ 0 implies that the maximum is attained at a vertex satisfying
∀j :

∑
J3j yJ = 1. However, the number of such vertices is still very large except for small

values of k.
To get the bound on the distillable GHZ rate (respectively the asymptotic subrank),

one subtracts the optimal value of either linear program from H(P ) (respectively h[k]).

Example 4.1 (Asymptotic subrank, k = 2). For k = 2 the optimum is clearly at xj = h{j}
for j = 1, 2 in the primal formulation, y{1} = y{2} = 1 in the dual one, which leads to the
lower bound

log Q˜(Ψ) ≥ h{1,2} − h{1} − h{2}. (66)

Recall that the terms on the right hand side depend on a chosen distribution P ∈ P(Ψ)
through its marginals. The terms are

h{1,2} = max
Q∈P(Ψ)
∀j:Qj=Pj

H(A{1,2})Q = max
Q∈P(Ψ)
∀j:Qj=Pj

H(Q) (67)

h{1} = max
Q∈P(Ψ)
∀j:Qj=Pj

H(A{1}|A{2})Q = max
Q∈P(Ψ)
∀j:Qj=Pj

H(Q)−H(P2) (68)

h{2} = max
Q∈P(Ψ)
∀j:Qj=Pj

H(A{2}|A{1})Q = max
Q∈P(Ψ)
∀j:Qj=Pj

H(Q)−H(P1), (69)

therefore

log Q˜(Ψ) ≥ max
P∈P(Ψ)

H(P1) +H(P2)− max
Q∈P(Ψ)
∀j:Qj=Pj

H(Q)

 . (70)

Without loss of generality the maximum can be restricted to be over those P which have
maximal entropy given its marginals, in which case the expression to be maximized is
I(A1 : A2)P .
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Example 4.2 (Asymptotic subrank, k = 3). Let k = 3. Then the objective function is

h{1}y{1} + h{2}y{2} + h{3}y{3} + h{1,2}y{1,2} + h{1,3}y{1,3} + h{2,3}y{2,3}, (71)

and the feasible region is given by the inequalities

y{1} + y{1,2} + y{1,3} ≤ 1 (72a)

y{2} + y{1,2} + y{2,3} ≤ 1 (72b)

y{3} + y{1,3} + y{2,3} ≤ 1 (72c)

along with yJ ≥ 0 for all J . The vertices a satisfying eqs. (72a72a)–(72c72c) with equality are
(y{1}, y{2}, y{3}, y{1,2}, y{1,3}, y{2,3}) = (1, 1, 1, 0, 0, 0), (1, 0, 0, 0, 0, 1), (0, 0, 0, 1/2, 1/2, 1/2),
up to permutation of the subsystem indices. Therefore the maximum of the dual program
is

max
{
h{1}+h{2}+h{3}, h{1}+h{1,2}, h{2}+h{1,3}, h{3}+h{1,2},

1

2

(
h{1,2} + h{1,3} + h{2,3}

)}
.

(73)

This has to be subtracted from h{1,2,3}, so the best lower bound on log Q˜(Ψ) is the minimum
of the following expressions

h{1,2,3} − h{1} − h{2} − h{3} (74a)

h{1,2,3} − h{1} − h{1,2} (74b)

h{1,2,3} − h{2} − h{1,3} (74c)

h{1,2,3} − h{3} − h{1,2} (74d)

h{1,2,3} −
1

2

(
h{1,2} + h{1,3} + h{2,3}

)
. (74e)

Example 4.3 (Asymptotic subrank of free subsets, k = 3). Let k = 3 again, and assume
now that Ψ is free (introduced in ref. [Fra02Fra02], this notion of freeness differs from the one
in Definition 2.12.1), i.e. any two elements of Ψ differ in at least two coordinates. Then
h{j} = 0 for j = 1, 2, 3, and

hj = max
Q∈P(Ψ)
∀j:Qj=Pj

H(Q)−H(Pj). (75)

Assume without loss of generality that P maximizes H(P ) with given marginals. Then the
lower bound on log Q˜(Ψ) becomes

log Q˜(Ψ) ≥ min

{
H(P1), H(P2), H(P3),

1

2
(H(P1) +H(P2) +H(P3)−H(P ))

}
. (76)

Example 4.4 (Asymptotic subrank). More generally, if k is arbitrary and any two ele-
ments of Ψ differ in at least k − 1 coordinates, then hJ = 0 for |J | ≤ k − 2,

hj = max
Q∈P(Ψ)
∀j:Qj=Pj

H(Q)−H(Pj), (77)

and

h[k] = max
Q∈P(Ψ)
∀j:Qj=Pj

H(Q). (78)
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Assume that P has maximal entropy among the distributions with the same marginals,
then hj = H(P ) − H(Pj) and h[k] = H(P ). Now most constraints of Problem 11 are
vacuous, the only conditions are

∀j :

 k∑
j=1

xj

− xj ≥ H(P )−H(Pj). (79)

The optimum becomes

max

{
H(P )−H(P1), . . . ,H(P )−H(Pk),

1

k − 1
(kH(P )−H(P1)− · · · −H(Pk))

}
, (80)

which leads to the bound

log Q˜(Ψ) ≥ min

{
H(P1), . . . ,H(Pk),

1

k − 1
(H(P1) + · · ·+H(Pk)−H(P ))

}
(81)

We now turn to optimizing the lower bound of Theorem 1.11.1. When evaluating the
optimum of Problem 22 in this setting, the number of vertices that need to be considered
can be reduced using strong subadditivity of the entropy. Indeed, suppose that a tentative
maximum point satisfies yJ1 > 0, yJ2 > 0 for some nonempty disjoint subsets J1, J2 ⊆ [k]
such that J1 ∪ J2 6= [k]. Then the transformation yJ1 → yJ1 − δ, yJ2 → yJ2 − δ, yJ1∪J2 →
yJ1∪J2 + δ leads to a feasible point if 0 < δ ≤ min{yJ1 , yJ2}, and changes the value of the
objective function by

δ(H(AJ1∪J2 |AJ1∪J2
)−H(AJ1 |AJ1

)−H(AJ2 |AJ2
))

= δ(H(AJ1
) + H(AJ2

) −H(AJ1∪J2
) −H(A[k])), (82)

which is nonnegative by the strong subadditivity inequality applied to the random variables
AJ1 , AJ2 , AJ1∪J2

. In particular, any vertex where such a reduction is possible can be
excluded when looking for the maximum.

Example 4.5 (Distillable entanglement, k = 3). For k = 3, the remaining vertices are
(y{1}, y{2}, y{3}, y{1,2}, y{1,3}, y{2,3}) = (1, 0, 0, 0, 0, 1) and (0, 0, 0, 1/2, 1/2, 1/2), up to per-
mutations of the subsystems. The lower bound on ED,GHZ is

min{I(A1 : A2A3), I(A2 : A1A3), I(A3 : A1A2),
1

2
I(A1 : A2 : A3)}, (83)

where I(A1 : A2 : A3) = H(A1) +H(A2) +H(A3)−H(A1A2A3).

Example 4.6 (Distillable entanglement, k = 4). For k = 4, the lower bound on ED,GHZ

is the minimum of the quantities

I(A1 : A2A3A4) (84a)

I(A1A2 : A3A4) (84b)

1

2
I(A1A2 : A3 : A4) (84c)

1

3
I(A1 : A2 : A3 : A4) (84d)

1

3
H(A1A2) +

1

3
H(A1A3) +

1

3
H(A2A3) +

2

3
H(A4)− 2

3
H(A1A2A3A4) (84e)

and the similar ones with permuted subsystem indices.
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Remark 4.7. If I1 = · · · = Ik and the state |ψ〉〈ψ| (or at least the induced distribution
P ) is symmetric, then the optimal value is attained at x1 = · · · = xk. This is because
permutations of any feasible vector xj are still feasible and the objective function takes
the same value on them. In this case, the number of inequalities is only k − 1, since
H(AJ |AJ)P depends only on |J |. The optimal value for x can be written as

x = max
1≤j≤k−1

H(A[j]|A[j]
)P

j
= max

1≤j≤k−1

H(P )−H(A[k−j])P

j
, (85)

whereas the lower bound on the distillable entanglement becomes

ED,GHZ(|ψ〉〈ψ|) ≥ min
1≤j≤k−1

kH(A[k−j])P − (k − j)H(P )

j
. (86)

Example 4.8 (W state). Let |ψ〉 = |Wk〉 = 1√
k
(|100 . . . 00〉+|010 . . . 00〉+· · ·+|00 . . . 01〉).

As remarked above, the optimal value is attained at some x1 = · · · = xk = x. The
distribution P is now uniform on the support, H(P ) = log k and

H(A[k−j])P = −k − j
k

log
1

k
− j

k
log

j

k
, (87)

which leads to the bound

ED,GHZ(|Wk〉〈Wk|) ≥ min
1≤j≤k−1

log
k

j
= log

k

k − 1
= O(k−1). (88)

The support of Wk in the computational basis has the property that any probability
distribution on it is uniquely determined by its marginals, making the limits in Lemma 2.42.4
especially simple to evaluate. They are equal to the appropriate Shannon conditional
entropies, which implies that the lower bound of Example 2.62.6 is the same as the lower
bound on the LOCC distillable rate. It is known that none of these lower bounds are op-
timal. The logarithm of the asymptotic subrank of the support is h(1/k) where h(p) =
−p log p− (1− p) log(1− p) (see [CW90CW90] for the lower bound (k = 3) and [VC15VC15, CVZ16CVZ16]
(general k) and [Str91Str91, VC15VC15] for the upper bound). The LOCC distillation rate is not
known, but for k = 3 ref. [SVW05SVW05] proves a lower bound of 0.64327 . . ., whereas our lower
bound is only 0.58496 . . ..

Example 4.9 (Equal superposition of permutations). Consider now the state |ψ〉 =
1√
k!

∑
σ∈Sk |σ(1)σ(2) . . . σ(k)〉. Then H(A[k−j])P = log k!

j! , therefore we get the bound

ED,GHZ(|ψ〉〈ψ|) ≥ log k!− k max
1≤j≤k−1

log j!

j
= log k!− k log(k − 1)!

k − 1

=
1

ln 2
− log k

2k
+O(k−1).

(89)

Finally, we would like to stress that the bound of Theorem 1.11.1 depends on the local
bases as well. At present we are not aware of an efficient way to optimize the basis choice,
and we do not know whether the optimized bound is additive on copies of the same state
or considering powers can lead to an improvement. On the other hand, if we fix a basis
choice for a single copy and use the tensor power bases, then the bound is additive, since
in the dual formulation the feasible region stays the same, whereas the objective function
as well as H(P ) are multiplied by the number of copies.
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5 Discussion

To help evaluate the strengths and weaknesses of our bound, we compare it with the lower
bounds from refs. [SVW05SVW05] and [SME17SME17] on specific families of tripartite states. Let
ρABC = ρ = |ψ〉〈ψ| denote the initial state, ρA = TrBC ρ, etc. its marginals.

The method suggested in [SVW05SVW05, Example 11] uses a protocol simultaneously distill-
ing GHZ states and EPR pairs between a specified pair of parties. If we do this for two
pairs of parties, then the resulting EPR pairs can be turned into GHZ states by telepor-
tation. The asymptotic rates of GHZ states and EPR pairs between e.g. parties A and
B are min{H(ρA), H(ρB)} − EC(ρAB) and EC(ρAB), respectively, where EC stands for
the entanglement cost, and can be replaced with a higher value as long as both rates stay
nonnegative. Suppose that for a fraction t of the initial states we apply the protocol to
produce EPR pairs between A and B, while for the remaining fraction we produce EPR
pairs between B and C. The above strategy leads to the following lower bound on ED,GHZ:

t(min{H(ρA), H(ρB)} − EC(ρAB))

+ (1− t)(min{H(ρA), H(ρC)} − EC(ρAC)) + min{tEC(ρAB), (1− t)EC(ρAC)}
(90)

This holds for any t ∈ [0, 1] and for any permutation of the three parties. This expression
as a function of t is either affine or obtained by gluing together two affine parts. Therefore
the maximum is attained either at t = 0 or t = 1 or at the point where the arguments
of the last minimum coincide, t = EC(ρAC)/(EC(ρAB) +EC(ρAC)). For these values (9090)
evaluates to

min{H(ρA), H(ρC)} − EC(ρAC) (91)

min{H(ρA), H(ρB)} − EC(ρAB) (92)

and

min{H(ρA), H(ρB)}EC(ρAC) + min{H(ρA), H(ρC)}EC(ρAB)− EC(ρAB)EC(ρAC)

EC(ρAB) + EC(ρAC)
(93)

respectively. The value of EC is in general not known, therefore in the graphs below we
use the entanglement of formation (EF ) instead as an upper bound, which for two qubits
can be evaluated using Wootters’ formula [Woo98Woo98].

A different lower bound on the distillable rate comes from [SME17SME17, Theorem 2], spe-
cialized to the GHZ state as the target:

ED,GHZ(ρ) ≥ min

{
H(ρA)

2
, H(ρB), H(ρC)

}
. (94)

Again, the same holds for any permutation of the subsystems. To get the best bound, the
party with the highest local entropy should take the place of A.

For reference, we also compute the upper bound given by the bipartite cuts, namely
min{H(ρA), H(ρB), H(ρC)}.

As a first simple example let us examine the generalized GHZ states GHZP ∈ S(CX ⊗
CX ⊗CX ) where P ∈ P(X ). With respect to the local bases {|x〉}x∈X , Theorem 1.11.1 gives
H(P ), matching the bipartite upper bound. (9191) evaluates to the same lower bound, while
(9494) gives only half of this rate. For more than three parties, Theorem 1.11.1 still gives H(P ),
while the method of ref. [SME17SME17] leads to a rate of H(P )/(k − 1).
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Figure 1: Bounds on the distillable entanglement of the asymmetric W state. (Thick
black: lower bound from Theorem 1.11.1, dashed blue: lower bound from [SVW05SVW05], dot-
dashed green: lower bound from [SME17SME17], solid red: upper bound given by smallest local
entropy)

Next we consider the asymmetric W states |ψp〉 =
√
p |100〉+√p |010〉+

√
1− 2p |001〉

where p ∈ [0, 1/2]. These interpolate between a separable state (p = 0) and an EPR pair
shared between A and B (p = 1/2), both of which have zero distillable GHZ entanglement,
while the symmetric W state is recovered by choosing p = 1/3. We choose the {|0〉 , |1〉}
as the local bases. The lower bound of Theorem 1.11.1 gives the minimum of h(1− 2p) and
h(p)− p, (9191) yields

h(p)h

(
1−
√

1−4p(1−2p)

2

)
+ min{h(p), h(1− 2p)}h

(
1−
√

1−4p2

2

)
h

(
1−
√

1−4p(1−2p)

2

)
+ h

(
1−
√

1−4p2

2

) . (95)

The lower bound from (9494) is min{h(p), h(1− 2p),max{h(p)/2, h(1− 2p)/2}}. The three
lower bounds together with the bipartite upper bound min{h(p), h(1−2p)} are illustrated
in Figure 11. When p is sufficiently close to 1/2, both (9494) and our bound match the upper
bound h(1 − 2p). More precisely, if we denote by p∗ the smallest value in [1/3, 1/2] such
that p∗ ≤ p implies ED,GHZ(|ψp〉〈ψp|) = h(1 − 2p), then (9494) shows that p∗ ≤ 0.45569 . . .
(the solution of h(p)/2 = h(1− 2p)), whereas our bound improves this to p∗ ≤ 0.4359 . . .
(the solution of h(p)− p = h(1− 2p)).

Consider now the state

|Rp〉 =

√
p

2
|000〉+

√
p

2
|011〉+

√
1− p

2
|100〉 −

√
1− p

2
|111〉 . (96)

This family interpolates between an EPR pair between B and C (p = 0) and a GHZ
state (p = 1/2, up to an Hadamard gate applied at A). This state is studied in [SVW05SVW05,
Example 10.] (also in [GLP05GLP05]), where it is found that their protocol gives a GHZ rate
of h(p), matching the bipartite upper bound. In contrast, (9494) gives only min{h(p), 1/2},
which exemplifies that the method based on combing works best when the state is close
to a bipartite one and cannot make use of genuine multipartite entanglement. When
applied with the computational basis, Theorem 1.11.1 only gives the trivial lower bound 0.
This is because the measurement of A is independent of the measurement results of B
and C together. However, a rotation on the first qubit can result in a nontrivial bound.
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Figure 2: Bounds on the distillable entanglement of the state in (9696). (Thick black: lower
bound from Theorem 1.11.1, dot-dashed green: lower bound from [SME17SME17], solid red: upper
bound given by smallest local entropy, equal to the lower bound from [SVW05SVW05])

Measuring in the (|0〉 ± |1〉)/
√

2 basis leads to a lower bound of 1 − h(1/2 +
√
p(1− p)).

The bounds are illustrated in Figure 22.
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A Entropies

In this section we will collect some definitions and facts from single-shot information
theory. We mostly follow the notations of ref. [Tom15Tom15], but specialize to classical (com-
muting) random variables, therefore there is no need to distinguish different types of Rényi
divergences.

With the help of the Rényi divergence

Dα (P‖Q) =
1

α− 1
log
∑
x∈X

P (x)αQ(x)1−α (97)

between subnormalized distributions P,Q ∈ P≤(X ), one defines two versions of the Rényi
conditional entropies (the first one already encountered in the main text, while the second
one only used in the appendices with α→∞),

H↑α(X|Y )P = sup
Q∈P(Y)

−Dα (PXY ‖IX ⊗QY )

=
α

1− α
log

∑
y∈Y

PY (y)

(∑
x∈X

PX|Y (x|y)α

)1/α
 (98)
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and

H↓α(X|Y )P = −Dα (PXY ‖IX ⊗ PY )

=
1

1− α
log

∑
x∈X
y∈Y

PXY (x, y)αPY (y)1−α

 .
(99)

Both definitions can be extended to α =∞ by taking limits:

H↑∞(X|Y )P = − log
∑
y∈Y

PY (y) max
x∈X

PX|Y (x|y) (100)

H↓∞(X|Y )P = min
y∈suppPY

min
x∈X

log
1

PX|Y (x|y)
. (101)

We define the smooth min-entropy as

Hε
min(X|Y )P = max

Q∈Bε(P )
H↑∞(X|Y )Q. (102)

Note that if P is normalized and we allow embedding into a larger alphabet, then the
maximum is attained at a normalized distribution Q [Tom15Tom15, Lemma 6.5]. The smooth
min-entropy can be lower bounded using the Rényi entropies as [Tom15Tom15, eq. (6.92)]

Hε
min(X|Y )P ≥ H↑α(X|Y )P −

1

α− 1
log

2

ε2
(103)

for P ∈ P≤(X × Y) and any α > 1 and ε ∈ (0, 1).
The alternative smooth min-entropy is [TSSR11TSSR11, Definition 4.]

Ĥε
min(X|Y )P = max

Q∈Bε(P )
H↓∞(X|Y )Q. (104)

Note again that if P is normalized then the optimal Q can be chosen normalized as well.
The min-entropy and the alternative min-entropy are related as [TSSR11TSSR11, Lemma 20.]

Ĥε1+ε2
min (X|Y )P ≥ Hε2

min(X|Y )P − log

(
2

ε21
+

1

1− ε2

)
. (105)

We now combine the inequalities to bound the alternative smooth min-entropy in terms
of the “up” Rényi entropy.

Lemma A.1. For P ∈ P(X × Y), α > 1 and ε ∈ (0, 1) the inequality

Ĥε
min(X|Y )P ≥ H↑α(X|Y )P −

(
1 +

1

α− 1

)
log

10

ε2
(106)

holds.

Proof. We use (105105) with ε1 = ε2 = ε/2 and then (103103) with smoothing parameter ε/2:

Ĥε
min(X|Y )P ≥ Hε/2

min(X|Y )P − log

(
8

ε2
+

1

1− ε/2

)
≥ H↑α(X|Y )P −

1

α− 1
log

8

ε2
− log

(
8

ε2
+

1

1− ε/2

)
≥ H↑α(X|Y )P −

1

α− 1
log

10

ε2
− log

10

ε2

(107)

since (1− ε/2)−1 < 2 < 2/ε2.
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Remark A.2. The bound derived in Lemma A.1A.1 has the advantage that it has a simple
form and is valid for the largest possible range of parameters. This comes at the cost of
not being tight in certain regimes, including the one we use in the proof of Theorem 1.11.1
(namely α ≈ 1, ε� 1). However, this does not affect the resulting asymptotic bound.

B Properties of random generalized GHZ states

The goal of this section is to derive some properties of random GHZ states (see Defini-
tion 3.13.1) and to prove Lemma 3.23.2. First note that Nielsen’s theorem [Nie99Nie99] extends to a
characterisation of LOCC transformations between the pure states GHZP :

Theorem B.1 (Nielsen). Let P and Q be probability distributions. Then GHZP
LOCC−−−−→

GHZQ iff P is majorized by Q.

Lemma B.2. Let PXY be a probability distribution on X × Y. Then

GHZPXY
LOCC−−−−→ GHZ⊗bH

↓
∞(X|Y )P c . (108)

Proof. When the conditioning is trivial (|Y| = 1), the relation is an immediate consequence
of Nielsen’s theorem. In the general case, this implies

GHZPXY (·|y)
LOCC−−−−→ GHZ⊗bH

↓
∞(X|Y=y)c

LOCC−−−−→ GHZ⊗bminy∈suppPY
H↓∞(X|Y=y)c = GHZ⊗bH

↓
∞(X|Y )c .

(109)

In the second transformation some of the copies are discarded, which is clearly possible
via LOCC. To implement the stated transformation, the corresponding transformations
are preformed conditioned on the classical value y, and then the labels are erased.

Next we turn to approximate transformations. The following lemma relates the purified
distance (D) of two random GHZ states to that of the probability distributions.

Lemma B.3. Let P,Q ∈ P≤(X × Y). Then D(GHZPXY ,GHZQXY ) = D(P,Q).

Proof. It is enough to estabilish F (GHZPXY ,GHZQXY ) = F (P,Q), since the purified dis-
tance is a function of the fidelity. First note that Tr GHZPXY =

∑
x,y PXY (x, y), therefore

the first terms in (2626) agree. The second term is homogeneous in both states, therefore
we can assume that P,Q are normalized.

The states are block-diagonal with respect to the direct sum decomposition CX ×
CY =

⊕
y∈Y CX , therefore

√
GHZ

1/2
QXY

GHZPXY GHZ
1/2
QXY

can be computed blockwise.
The contribution of block y to the trace is√

PY (y)
√
QY (y)

∑
x∈X

√
PX|Y (x|y)QX|Y (x|y) =

∑
x∈X

√
PXY (x, y)QXY (x, y). (110)

The sum of this expression over y is equal to F (P,Q).

Proof of Lemma 3.23.2. We may suppose that |X | is so large that the alternative smooth min-
entropy of P is attained at a normalized distribution P ′. This means that D(P, P ′) ≤ ε
and (by Lemma A.1A.1)

H↓∞(X|Y )P ′ = Ĥε
min(X|Y )P ≥ H↑α(X|Y )P −

(
1 +

1

α− 1

)
log

10

ε2
. (111)

By Lemma B.3B.3 we have D(GHZPXY ,GHZP ′XY ) = D(PXY , P
′
XY ) ≤ ε and by Lemma B.2B.2

the relation GHZP ′XY
LOCC−−−−→ GHZ⊗N is true. Therefore GHZPXY

LOCC−−−−→ε GHZ⊗N as
claimed.

24



References

[Ari77] S Arimoto. Information mesures and capacity of order α for discrete memory-
less channels. In Imre Csiszár and Peter Elias, editors, Topics in information
theory, volume 16 of Colloquia mathematica Societatis János Bolyai, pages
41–52. North-Holland Publishing Co., 1977.

[BBPS96] Charles H Bennett, Herbert J Bernstein, Sandu Popescu, and Benjamin Schu-
macher. Concentrating partial entanglement by local operations. Physical
Review A, 53(4):2046, 1996.

[BPR+00] Charles H Bennett, Sandu Popescu, Daniel Rohrlich, John A Smolin, and
Ashish V Thapliyal. Exact and asymptotic measures of multipartite pure-state
entanglement. Physical Review A, 63(1):012307, 2000.

[CCD+10] Lin Chen, Eric Chitambar, Runyao Duan, Zhengfeng Ji, and Andreas Winter.
Tensor rank and stochastic entanglement catalysis for multipartite pure states.
Physical review letters, 105(20):200501, 2010.

[CDS08] Eric Chitambar, Runyao Duan, and Yaoyun Shi. Tripartite entanglement trans-
formations and tensor rank. Physical review letters, 101(14):140502, 2008.

[CT12] Thomas M Cover and Joy A Thomas. Elements of information theory. John
Wiley & Sons, 2012.
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