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Abstract

We study the problem of converting a product of Greenberger-Horne-
Zeilinger (GHZ) states shared by subsets of several parties in an arbitrary
way into GHZ states shared by every party. Our result is that if SLOCC
transformations are allowed, then the best asymptotic rate is the minimum
of bipartite log-ranks of the initial state. This generalizes a result by
Strassen on the asymptotic subrank of the matrix multiplication tensor.

1 Introduction

It has been realized recently (see e.g. [1, 2]) that certain problems in algebraic
complexity theory can be interpreted as questions regarding asymptotic entan-
glement transformations by stochastic local operations and classical communica-
tion (SLOCC). Most prominently, the asymptotic rate at which GHZ states can
be converted to triples of Einstein-Podolsky-Rosen (EPR) pairs, shared between
parties AB, BC and AC, is the same as the exponent of matrix multiplication
ω, i.e. the infimum of real numbers τ such that n×n matrices can be multiplied
using O(nτ ) arithmetic operations [1]. This particular problem is still open, the
best bounds currently being 2 ≤ ω ≤ 2.3728639 [3], but there are several sim-
ilar problems where the exact value is known. Interestingly, these include the
reverse transformation. To state this precisely, we first introduce some notation.

Definition 1. Let V1, . . . , Vk and W1, . . . ,Wk be vector spaces and ψ ∈ V1 ⊗
· · · ⊗ Vk, φ ∈ W1 ⊗ · · · ⊗Wk. We say that ψ can be transformed into φ via

SLOCC (ψ
SLOCC−−−−−→φ) if there exist linear transformations Ai : Vi → Wi such

that (A1 ⊗ · · · ⊗Ak)ψ = φ.
The asymptotic SLOCC conversion rate from ψ to φ is

ω(ψ, φ) = lim
n→∞

1

n
inf
{
m ∈ N|ψ⊗m SLOCC−−−−−→φ⊗n

}
. (1)
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It is clear that the definition is not sensitive to multiplication by scalars, so
for simplicity, we will work with unnormalized states.

Let MaMu denote the triple of EPR pairs, i.e.

MaMu = EPRAB ⊗EPRBC ⊗EPRAC (2)

and let GHZ = |000〉+ |111〉. Then [4, Theorem 6.6]

ω(MaMu,GHZ) =
1

2
(3)

We review the main ingredients of the proof. The first one is a relaxation of
SLOCC convertibility:

Definition 2. Given tensors ψ ∈ V1⊗· · ·⊗Vk, φ ∈W1⊗· · ·⊗Wk, we say that ψ
degenerates to φ if there exist linear transformations Ai(ε) : Vi →Wi depending
on ε and ε−1 polynomially (i.e. the matrix element functions are polynomials)
such that (A1(ε)⊗ · · · ⊗Ak(ε))ψ = φ+O(ε) as ε→ 0. This fact will be denoted

by ψ
SLOCC−−−→φ.

The key result relating degeneration to asymptotic SLOCC transformations

is that ψ
SLOCC−−−→φ implies ω(ψ, φ) ≤ 1 (see [5, 6] or [2] for a proof using the

same notations as here). As an example, GHZ
SLOCC−−−→W leads to a simple

proof of ω(GHZ,W ) = 1, even though GHZ cannot be converted to W via
SLOCC in a one-shot setting.

Next, MaMu⊗n is the same as

N∑
i1,i2,i3=1

|i1i2〉 |i2i3〉 |i3i1〉 (4)

with N = 2n up to relabelling the local basis states. For some g ∈ N, we choose
the local linear transformations in the following way [4]:

A1(ε) |i1i2〉 = εi
2
1+2i1i2 |i1i2〉

A2(ε) |i2i3〉 = εi
2
2+2i2(i3−g) |i2i3〉

A3(ε) |i3i1〉 = ε(i3−g)
2+2(i3−g)i1 |i3i1〉 .

(5)

Applying the product to a term |i1i2〉 |i2i3〉 |i3i1〉 multiplies it by ε(i1+i2+i3−g)
2

,
therefore we have

N∑
i1,i2,i3=1

|i1i2〉 |i2i3〉 |i3i1〉
SLOCC−−−→

∑
1≤i1,i2,i3≤N
i1+i2+i3=g

|i1i2〉 |i2i3〉 |i3i1〉 . (6)

Up to relabelling, the resulting state is a GHZ state. To see this, it is enough
to note that every local basis element appears at most once, since any two of
i1, i2 and i3 determines the third one uniquely.

To complete the proof, one only needs to choose g as a function of N in such
a way that the number of terms grows as quadratically. This can be ensured by
choosing g = N .
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One possible generalization of the matrix multiplication state to k > 3 par-
ties can be obtained by replacing the EPR pairs by arbitrary collections of GHZ
states shared by subsets of the parties. The pattern can be conveniently en-
coded in a hypergraph on {1, . . . , k} with multiple edges allowed. For example,
the matrix multiplication state corresponds to the complete graph K3. The
statement of our main result involves the concept of edge-connectivity. For the
readers’ convenience, we recall the definition here.

Definition 3. A hypergraph H is connected if for any pair of vertices x and
y there is a sequence (x = v0, e1, v1, e2, v2, . . . , en, vn = y) such that the ei are
hyperedges, vi are vertices and ei is incident to vi−1 and vi for i = 1, . . . , n.

A hypergraph is l-edge-connected if it remains connected after removing any
subset of strictly less than l edges. The edge-connectivity λ(H) of a hypergraph
H is the largest l such that H is l-edge-connected.

Now we are ready to state our main result.

Theorem 1. Let the state corresponding to the hypergraph H be GHZH . Then

ω(GHZH ,GHZ) =
1

λ(H)
(7)

Note that the right hand side is easily seen to be a lower bound. This fol-
lows from the fact that 1) the bipartite rank across any bipartition cannot be
increased asymptotically, 2) the bipartite log-rank of GHZH across the biparti-
tion S-S (where S denotes the complement) is the number of hyperedges having
a nonvanishing intersection with both S and S, 3) the minimum of these ranks
is therefore λ(H), and 4) the rank of GHZ over any bipartition is 2.

2 Proof of main result

By a hypergraph we mean a triple (V,E, I) where V and E are sets and I ⊆
V × E. Elements of V are called vertices, E is the set of edges, and v ∈ V
is said to be incident with e ∈ E if (v, e) ∈ I. The sum of two hypergraphs
H1 = (V,E1, I1) and H2 = (V,E2, I2) on a common vertex set V is defined as
H1 + H2 = (V,E1 t E2, I1 t I2), where t stands for disjoint union and I1 t I2
is thought of as a subset of V × (E1 tE2) in the obvious way. Any hypergraph
can be uniquely written as the sum of hypergraphs having one edge each.

If V = [k] = {1, 2, . . . , k} for some positive integer k, we define the states
GHZHr by requiring GHZH1+H2

r = GHZH1
r ⊗GHZH2

r and that for the hypergraph
HS which consists of a single edge S ⊆ [k], the state GHZHS

r is an r-level GHZ
state shared among the parties in S, i.e.

GHZHS
r = |00 . . . 0〉S ⊗ (|11 . . . 1〉S + |22 . . . 2〉S + · · ·+ |rr . . . r〉S) (8)

These states are well-defined only up to SLOCC equivalence, but this is sufficient
for our purposes. We will make use of the fact that

ω(GHZHa ,GHZHb ) =
log b

log a
(9)

for any hypergraph H having at least one edge of size at least 2. If |E| = 1 and
the only edge is incident with every vertex, we will also write GHZr instead of
GHZHr .
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Similarly to eq. (4), the states GHZH may be written as a multiple sum.
For simplicity, we identify the edge set with [l] for some l ∈ N. To each edge
e ∈ E we introduce a summation index ie, and for each j ∈ [k] we let Ej be the
set of edges incident with the vertex j. Then we can write

GHZHn =

n−1∑
i1,...,il=0

|(ie)e∈E1〉1 |(ie)e∈E2〉2 · · · |(ie)e∈Ek
〉k (10)

Without loss of generality we will assume that there are no empty edges.
Following the idea in Strassen’s proof, but more generally, we wish to con-

sider several linear equalities involving the indices, and apply local ε-dependent
diagonal operations in such a way that the leading order contains precisely the
terms satisfying the equalities. Such a system of equations can be written as

c1i1 + c2i2 + · · ·+ clil = g (11)

where c1, . . . , cl, g ∈ Zd, d ≥ 1. Subtracting g from both sides and taking the
inner product with itself results in

0 = 〈g, g〉+
∑
e∈E

(
〈ce, ce〉i2e − 〈ce, g〉ie

)
+
∑
e,f∈E

〈ce, cf 〉ieif (12)

We need to distribute the terms among the vertices in such a way that an index
ie can only appear at vertices incident with e. This is always possible for the
first term and the following sum, while the condition for the double sum is that
〈ce, cf 〉 = 0 whenever there is no vertex incident to both e and f . In other
words, c : E → Zd is an orthogonal representation of the line graph L(H) of H.
Given such a c, we can choose local ε-dependent operators A1(ε), . . . , Ak(ε) in
such a way that

(A1(ε)⊗ · · · ⊗Ak(ε)) |(ie)e∈E1
〉1 |(ie)e∈E2

〉2 · · · |(ie)e∈Ek
〉k

= ε〈c1i1+···+clil−g,c1i1+···+clil−g〉 |(ie)e∈E1
〉1 |(ie)e∈E2

〉2 · · · |(ie)e∈Ek
〉k , (13)

which shows that

GHZHn
SLOCC−−−→

∑
0≤i1,...,il≤n−1
c1i1+···+clil=g

|(ie)e∈E1〉1 |(ie)e∈E2〉2 · · · |(ie)e∈Ek
〉k (14)

Next we want to ensure that the resulting state is a GHZ state. This happens
precisely if the values of the indices at any one vertex determine the remaining
ones uniquely. After fixing the indices at a vertex, c1i1 + · · ·+ clil = g becomes
a system of linear equations in the remaining indices, therefore the condition
is that the vectors corresponding to edges not incident with any one vertex
are linearly independent. It follows that the dimension d must be at least
|E| − minj |Ej |, and therefore a sufficient condition is that any d vectors are
linearly independent. Orthogonal representations of L(H) with this property
are said to be in general position. [7]

We now show that after fixing the coefficients in this way, the right hand
side g can be chosen such that the number of solutions is large.
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Theorem 2. Let H = ([k], E, I) be a hypergraph and suppose that c : E → Zd
is a general-position orthogonal representation of its line graph. Then

ω(GHZH2 ,GHZ2) ≤ 1

|E| − d
. (15)

Proof. Let C be the maximum of 1-norms of the vectors {ce}e∈E , and choose
G uniformly at random from the cube [−Cn,Cn − 1]d ∩ Zd. Let X(i1,...,il) be
the indicator random variable of the event that (i1, . . . , il) is a solution of the
(random) system of equations c1i1 + · · ·+ clil = G. The number of solutions is

N =

n−1∑
i1,...,il=0

X(i1,...,il). (16)

Since

EX(i1,...,il) = Pr(X(i1,...,il) = 1) = Pr(c1i1 + · · ·+ clil = G) = (2Cn)−d, (17)

the expected number of solutions is

EN = nl(2Cn)−d = (2C)−dnl−d (18)

Therefore there is at least one vector g such that c1i1 + · · · + clil = g has at
least M := d(2C)−dnl−de solutions. This implies that

ω(GHZH2 ,GHZ2) ≤ ω(GHZH2 ,GHZHn )ω(GHZHn ,GHZM )ω(GHZM ,GHZ2)

≤ log n

logd(2C)−dnl−de
→ 1

l − d
=

1

|E| − d
(19)

as n→∞.

It follows that the best bound is obtained if d is as small as possible. The
following result completes the proof of Theorem 1 by showing that the optimal
value is d = |E| − λ(H).

Theorem 3. Let H = ([k], E, I) be a hypergraph. Then its line graph has a
general-position orthogonal representation c : E → Z|E|−λ(H).

Proof. It is enough to see that there is an orthogonal representation c : E →
Q|E|−λ(H), since after multiplying each vector by the least common denominator
of its entries, it becomes one in Z|E|−λ(H).

Since H is λ(H)-edge-connected, its line graph is λ(H)-vertex-connected.
A result by Lovász, Saks and Schrijver [7, 8] states that any (n − d)-vertex-
connected graph with n vertices admits a general-position orthogonal represen-
tation in Rd. Their proof relies in an essential way on using real numbers, and it
does not seem to be possible to directly adapt the idea to our case. However, it is
possible to deduce the existence of a general-position orthogonal representation
in Qd as follows.

Let G = (V,E) be an (n − d)-vertex-connected graph with n vertices, and
let V = {v1, v2, . . . , vn} be an ordering of the vertices. We construct a map
OG : (Rd)V → (Rd)V recursively as follows. If f : V → Rd is any function, then
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(OGf)(v1) = f(v1). If i > 1, we let Ai = {vj |j < i and {vi, vj} /∈ E}. Let Pi
denote the orthogonal projection onto the subspace spanned by {(OGf)(v)|v ∈
Ai}. Then we set (OGf)(vi) = (I − Pi)f(vi).

It is clear from the definition that OGf is an orthogonal representation for
any f , and that if f is an orthogonal representation, then OGf = f .

Let us find a more explicit form of the projections Pi. Let us write Ai =
{vj1 , vj2 , . . . , vjr} with j1 < j2 < . . . < jr. To find Pi, we first orthogonalize the
vectors (OGf)(vjm), i.e. let g1 = (OGf)(vj1) and

gk = (OGf)(vjk)−
k−1∑
m=1

〈gm, (OGf)(vjk)〉
〈gm, gm〉

gm (20)

for k = 2, . . . , r. Here and in the following sum we exclude the terms with
gm = 0. Then the projection can be written as

Pix =

r∑
m=1

〈gm, x〉
〈gm, gm〉

gm. (21)

From this form we can see that if f : V → Qd then Pi maps Qd into itself,
therefore OGf : V → Qd as well.

If f : V → Rd is a function such that none of the denominators in the
above expression of Pi is 0, then OGf is clearly continuous at f . This holds
in particular if f is a general-position orthogonal representation, because in
this case OGf = f , and the families (f(v))v∈Ai

are linearly independent since
|Ai| ≤ d.

Now pick any general-position orthogonal representation f : V → Rd. By
continuity at f and using that being in general position is an open condition,
there is an open neighbourhood U of f such that f ′ ∈ U implies that OGf ′ is
also a general-position orthogonal representation. Since U 6= ∅ is open, there is
a function c0 : V → Qd in U , therefore c := OGc0 has the desired properties.

3 Discussion

Theorem 1 has a number of interesting special cases. Suppose first that the
hypergraph H is a graph consisting of a single path going through every vertex.
Then clearly λ(H) = 1, i.e. asymptotically one GHZ state per copy can be
extracted via SLOCC. Of course, this can be easily proved without our result,
since by teleportation the transformation can be performed on a single copy
exactly via LOCC. On the other hand, if we add a single new edge joining the
two endpoints, the graph becomes a cycle, which is 2-edge-connected, therefore
asymptotically two GHZ states per copy can be obtained. We do not know if
the same can be accomplished via LOCC with asymptotically vanishing error.

For the next example, let Kl
k denote the complete l-uniform hypergraph on

[k], i.e. the multiplicity of every l-element subset in Kl
k is one and there are no

other edges. Then it is not difficult to see that a minimum cut is obtained by
removing every edge incident with a distinguished vertex, therefore

ω(GHZ
Kl

k
2 ,GHZ2) =

1(
k−1
l−1
) . (22)
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This special case with l = 2 as well as the result for cycle graphs have recently
found applications in complexity theory. In particular, ref. [9] shows that our
results imply new protocols and bounds in nondeterministic multiparty quantum
communication complexity.

Now let H be an arbitrary hypergraph and suppose that instead of GHZ
states, the parties wish to distill EPR pairs shared between a specified pair AB.
Suppose that the minimum cut separating A from B consists of t edges. By
Menger’s theorem for hypergraphs, there exist t edge-disjoint paths P1, . . . , Pt
between A and B in H. Using Theorem 1 for the subhypergraph Pi, GHZPi

2 can
be transformed to a GHZ state on the subset of vertices incident with at least
one edge in Pi, which in turn can be converted to an EPR-pair between A and
B. This proves that ω(GHZH2 ,EPRAB) = 1/t. This transformation also has an
asymptotic LOCC counterpart with the same rate, under the name localizable
entanglement [10].

Finally, let us mention that our result can be easily extended to products
of GHZ-type states with possibly different number of levels. In this case, the
minimum bipartite log-rank gives the asymptotic rate at which GHZ states can
be obtained. Equivalently, H may be replaced with a hypergraph with weighted
edges, where the weight corresponding to an r-level GHZ state is log r. In this
case λ(H) on the right hand side of eq. (7) should be interpreted as the minimum
cut weight.
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