10 research outputs found
Evolution of variants of yeast site-specific recombinase Flp that utilize native genomic sequences as recombination target sites
As a tool in directed genome manipulations, site-specific recombination is a double-edged sword. Exquisite specificity, while highly desirable, makes it imperative that the target site be first inserted at the desired genomic locale before it can be manipulated. We describe a combination of computational and experimental strategies, based on the tyrosine recombinase Flp and its target site FRT, to overcome this impediment. We document the systematic evolution of Flp variants that can utilize, in a bacterial assay, two sites from the human interleukin 10 gene, IL10, as recombination substrates. Recombination competence on an end target site is acquired via chimeric sites containing mixed sequences from FRT and the genomic locus. This is the first time that a tyrosine site-specific recombinase has been coaxed successfully to perform DNA exchange within naturally occurring sequences derived from a foreign genomic context. We demonstrate the ability of an Flp variant to mediate integration of a reporter cassette in Escherichia coli via recombination at one of the IL10-derived sites
A Genome-Wide Analysis of FRT-Like Sequences in the Human Genome
Efficient and precise genome manipulations can be achieved by the
Flp/FRT system of site-specific DNA recombination.
Applications of this system are limited, however, to cases when target sites for
Flp recombinase, FRT sites, are pre-introduced into a genome
locale of interest. To expand use of the Flp/FRT system in
genome engineering, variants of Flp recombinase can be evolved to recognize
pre-existing genomic sequences that resemble FRT and thus can
serve as recombination sites. To understand the distribution and sequence
properties of genomic FRT-like sites, we performed a
genome-wide analysis of FRT-like sites in the human genome
using the experimentally-derived parameters. Out of 642,151 identified
FRT-like sequences, 581,157 sequences were unique and
12,452 sequences had at least one exact duplicate. Duplicated
FRT-like sequences are located mostly within LINE1, but
also within LTRs of endogenous retroviruses, Alu repeats and other repetitive
DNA sequences. The unique FRT-like sequences were classified
based on the number of matches to FRT within the first four
proximal bases pairs of the Flp binding elements of FRT and the
nature of mismatched base pairs in the same region. The data obtained will be
useful for the emerging field of genome engineering
Flp and Cre expressed from Flp–2A–Cre and Flp–IRES–Cre transcription units mediate the highest level of dual recombinase-mediated cassette exchange
Recombinase-mediated cassette exchange (RMCE) is a powerful tool for unidirectional integration of DNA fragments of interest into a pre-determined genome locale. In this report, we examined how the efficiency of dual RMCE catalyzed by Flp and Cre depends on the nature of transcription units that express the recombinases. The following recombinase transcription units were analyzed: (i) Flp and Cre genes expressed as individual transcription units located on different vectors, (ii) Flp and Cre genes expressed as individual transcription units located on the same vector, (iii) Flp and Cre genes expressed from a single promoter and separated by internal ribosome entry sequence and (iv) Flp and Cre coding sequences separated by the 2A peptide and expressed as a single gene. We found that the highest level of dual RMCE (35–45% of the transfected cells) can be achieved when Flp and Cre recombinases are expressed as Flp–2A–Cre and Flp–IRES–Cre transcription units. In contrast, the lowest level of dual RMCE (∼1% of the transfected cells) is achieved when Flp and Cre are expressed as individual transcription units. The analysis shows that it is the relative Flp–to–Cre ratio that critically affects the efficiency of dual RMCE. Our results will be helpful for maximizing the efficiency of dual RMCE aimed to engineer and re-engineer genomes
High Efficiency of a Sequential Recombinase-Mediated Cassette Exchange Reaction in Escherichia coli
A comparison between the efficiency of recombinase-mediated cassette exchange (RMCE) reactions catalyzed in Escherichia coli by the site-specific recombinases Flp of yeast and Int of coliphage HK022 has revealed that an Flp-catalyzed RMCE reaction is more efficient than an Int-HK022 catalyzed reaction. In contrast, an RMCE reaction with 1 pair of frt sites and 1 pair of att sites catalyzed in the presence of both recombinases is very inefficient. However, the same reaction catalyzed by each recombinase individually supplied in a sequential order is very efficient, regardless of the order. Atomic force microscopy images of Flp with its DNA substrates show that only 1 pair of recombination sites forms a synaptic complex with the recombinase. The results suggest that the RMCE reaction is sequential