14 research outputs found

    Far-Ultraviolet Number Counts on Field Galaxies

    Get PDF
    The far-ultraviolet (FUV) number counts of galaxies constrain the evolution of the star formation rate density of the universe. We report the FUV number counts computed from FUV imaging of several fields including the Hubble Ultra Deep Field, the Hubble Deep Field North, and small areas within the GOODS-North and South fields. These data were obtained with the Hubble Space Telescope (HST) Solar Blind Channel of the Advance Camera for Surveys. The number counts sample an FUV AB magnitude range from 21 to 29 and cover a total area of 15.9 arcmin^2, ~4 times larger than the most recent HST FUV study. Our FUV counts intersect bright FUV Galaxy Evolution Explorer counts at 22.5 mag and they show good agreement with recent semi-analytic models based on dark matter "merger trees" by R. S. Somerville et al. We show that the number counts are ~35% lower than in previous HST studies that use smaller areas. The differences between these studies are likely the result of cosmic variance; our new data cover more lines of sight and more area than previous HST FUV studies. The integrated light from field galaxies is found to contribute between 65.9^(+8)_(–8) and 82.6^(+12)_(–)12 photons s^(–1) cm^(–2) sr^(–1) Å^(–1) to the FUV extragalactic background. These measurements set a lower limit for the total FUV background light

    Far-Ultraviolet Number Counts of Field Galaxies

    Get PDF
    The far-ultraviolet (FUV) number counts of galaxies constrain the evolution of the star-formation rate density of the universe. We report the FUV number counts computed from FUV imaging of several fields including the Hubble Ultra Deep Field, the Hubble Deep Field North, and small areas within the GOODS-North and -South fields. These data were obtained with the Hubble Space Telescope Solar Blind Channel of the Advance Camera for Surveys. The number counts sample a FUV AB magnitude range from 21-29 and cover a total area of 15.9 arcmin^2, ~4 times larger than the most recent HST FUV study. Our FUV counts intersect bright FUV GALEX counts at 22.5 mag and they show good agreement with recent semi-analytic models based on dark matter "merger trees" by Somerville et al. (2011). We show that the number counts are ~35% lower than in previous HST studies that use smaller areas. The differences between these studies are likely the result of cosmic variance; our new data cover more lines of sight and more area than previous HST FUV studies. The integrated light from field galaxies is found to contribute between 65.9 +/-8 - 82.6 +/-12 photons/s/cm^2/sr/angstrom to the FUV extragalactic background. These measurements set a lower limit for the total FUV background light.Comment: Accepted for publication in ApJ, including 34 pages, 6 figures, and 2 table

    Near-Ultraviolet Sources in the Hubble Ultra Deep Field: The Catalog

    Get PDF
    The catalog from the first high-resolution U-band image of the Hubble Ultra Deep Field, taken with Hubble's Wide-Field Planetary Camera 2 through the F300W filter, is presented. We detect 96 U-band objects and compare and combine this catalog with a Great Observatories Origins Deep Survey B-selected catalog that provides B, V, i, and z photometry, spectral types, and photometric redshifts. We have also obtained far-ultraviolet (FUV, 1614 Ã…) data with Hubble's Advanced Camera for Surveys Solar Blind Channel (ACS/SBC) and with GALEX. We detected 31 sources with ACS/SBC, 28 with GALEX/FUV, and 45 with GALEX/NUV. The methods of observations, image processing, object identification, catalog preparation, and catalog matching are presented

    The GALEX Ultraviolet Virgo Cluster Survey (GUViCS) III. The Ultraviolet Source Catalogs

    Full text link
    In this paper we introduce the deepest and most extensive ultraviolet extragalactic source catalogs of the Virgo Cluster area to date. Archival and targeted GALEX imaging is compiled and combined to provide the deepest possible coverage over ~120 deg^2 in the NUV (lambda_eff=2316 angstroms) and ~40 deg^2 in the FUV (lambda_eff=1539 angstroms) between 180 deg <= R.A. <= 195 deg and 0 deg <= Decl. <= 20 deg. We measure the integrated photometry of 1770 extended UV sources of all galaxy types and use GALEX pipeline photometry for 1,230,855 point-like sources in the foreground, within, and behind the cluster. Extended source magnitudes are reliable to m_UV ~22, showing ~0.01 sigma difference from their asymptotic magnitudes. Point-like source magnitudes have a 1 sigma standard deviation within ~0.2 mag down to m_uv ~23. The point-like source catalog is cross-matched with large optical databases and surveys including the SDSS DR9 (> 1 million Virgo Cluster sources), the Next Generation Virgo Cluster Survey (NGVS; >13 million Virgo Cluster sources), and the NED (~30,000 sources in the Virgo Cluster). We find 69% of the entire UV point-like source catalog has a unique optical counterpart, 11% of which are stars and 129 are Virgo cluster members neither in the VCC nor part of the bright CGCG galaxy catalog (i.e., m_pg < 14.5). These data are collected in four catalogs containing the UV extended sources, the UV point-like sources, and two catalogs each containing the most relevant optical parameters of UV-optically matched point-like sources for further studies from SDSS and NGVS. The GUViCS catalogs provide a unique set of data for future works on UV and multiwavelength studies in the cluster and background environments.Comment: 35 pages, 24 figures, 15 tables, Accepted for publication in A&

    An International Ultraviolet Explorer Archival Study of Dwarf Novae in Outburst

    Full text link
    We present a synthetic spectral analysis of nearly the entire far ultraviolet International Ultraviolet Explorer (IUE) archive of spectra of dwarf novae in or near outburst. The study includes 46 systems of all dwarf nova subtypes both above and below the period gap. The spectra were uniformly analyzed using synthetic spectral codes for optically thick accretion disks and stellar photospheres along with the best-available distance measurements or estimates. We present newly estimated accretion rates and discuss the implications of our study for disk accretion physics and CV evolution.Comment: Accepted for publication in the ApJ, Part

    UVUDF: Ultraviolet Imaging of the Hubble Ultradeep Field with Wide-field Camera 3

    Get PDF
    We present an overview of a 90-orbit Hubble Space Telescope treasury program to obtain near ultraviolet imaging of the Hubble Ultra Deep Field using the Wide Field Camera 3 UVIS detector with the F225W, F275W, and F336W filters. This survey is designed to: (i) Investigate the episode of peak star formation activity in galaxies at 1<z<2.5; (ii) Probe the evolution of massive galaxies by resolving sub-galactic units (clumps); (iii) Examine the escape fraction of ionizing radiation from galaxies at z~2-3; (iv) Greatly improve the reliability of photometric redshift estimates; and (v) Measure the star formation rate efficiency of neutral atomic-dominated hydrogen gas at z~1-3. In this overview paper, we describe the survey details and data reduction challenges, including both the necessity of specialized calibrations and the effects of charge transfer inefficiency. We provide a stark demonstration of the effects of charge transfer inefficiency on resultant data products, which when uncorrected, result in uncertain photometry, elongation of morphology in the readout direction, and loss of faint sources far from the readout. We agree with the STScI recommendation that future UVIS observations that require very sensitive measurements use the instrument's capability to add background light through a "post-flash". Preliminary results on number counts of UV-selected galaxies and morphology of galaxies at z~1 are presented. We find that the number density of UV dropouts at redshifts 1.7, 2.1, and 2.7 is largely consistent with the number predicted by published luminosity functions. We also confirm that the image mosaics have sufficient sensitivity and resolution to support the analysis of the evolution of star-forming clumps, reaching 28-29th magnitude depth at 5 sigma in a 0.2 arcsecond radius aperture depending on filter and observing epoch.Comment: Accepted A
    corecore