20 research outputs found

    The VLT Survey Telescope ATLAS

    Get PDF
    The VLT Survey Telescope ATLAS survey is an optical ugriz survey aiming to cover ≈4700 deg2 of the southern sky to similar depths as the Sloan Digital Sky Survey (SDSS). From reduced images and object catalogues provided by the Cambridge Astronomical Surveys Unit, we first find that the median seeing ranges from 0.8 arcsec FWHM (full width at half-maximum) in i to 1.0 arcsec in u, significantly better than the 1.2–1.5 arcsec seeing for SDSS. The 5σ mag limit for stellar sources is rAB = 22.7 and in all bands these limits are at least as faint as SDSS. SDSS and ATLAS are more equivalent for galaxy photometry except in the z band where ATLAS has significantly higher throughput. We have improved the original ESO magnitude zero-points by comparing m < 16 star magnitudes with the AAVSO Photometric All-Sky Survey in gri, also extrapolating into u and z, resulting in zero-points accurate to ≈ ± 0.02 mag. We finally compare star and galaxy number counts in a 250 deg2 area with SDSS and other count data and find good agreement. ATLAS data products can be retrieved from the ESO Science Archive, while support for survey science analyses is provided by the OmegaCAM Science Archive, operated by the Wide-Field Astronomy Unit in Edinburgh

    CLD -- A Detector Concept for the FCC-ee

    No full text
    This note gives a conceptual description and illustration of the CLD detector, based on the work for a detector at CLIC. CLD is one of the detectors envisaged at a future 100 km e+e−e^+e^- circular collider (FCC-ee). The note also contains a brief description of the simulation and reconstruction tools used in the linear collider community, which have been adapted for physics and performance studies of CLD. The detector performance is described in terms of single particles, particles in jets, jet energy and angular resolution, and flavour tagging. The impact of beam-related backgrounds (incoherent e+e−e^+e^- pairs and synchrotron radiation photons) on the performance is also discussed

    Prospects for a survey of the Galactic plane with the Cherenkov Telescope Array

    No full text
    Approximately one hundred sources of very-high-energy (VHE) gamma rays are known in the Milky Way. A survey of the entire Galactic Plane in the energy range from a few tens of GeV to a few hundred TeV has been proposed as a Key Science Project for the upcoming Cherenkov Telescope Array Observatory (CTAO). This article presents the status of the studies towards the Galactic Plane Survey (GPS). We build and make publicly available a sky model that combines data from observations of known gamma-ray emitters with state-of-the-art physically-driven models of synthetic populations of the main classes of established Galactic VHE sources, as well as of interstellar emission from cosmic-ray interactions in the Milky Way. We also perform an optimisation of the observation strategy. We use the improved sky model and observation strategy to simulate GPS data that are analysed using the methods and software tools under development for real data. We show that the GPS has the potential to increase the number of known Galactic VHE emitters by almost a factor of five. This corresponds to the detection of more than two hundred pulsar wind nebulae and a few tens of supernova remnants at average integral fluxes one order of magnitude lower than in the existing sample above 1 TeV, therefore opening the possibility to perform unprecedented population studies. The GPS also has the potential to provide new VHE detections of binary systems and pulsars, and to identify any bright PeVatrons. Furthermore, the GPS will constitute a pathfinder for deeper follow-up observations of these source classes. Finally, we show that we can extract from GPS data an estimate of the contribution to diffuse emission from unresolved sources, and that there are good prospects of detecting interstellar emission and statistically distinguishing different scenarios. (Abridged
    corecore