128 research outputs found

    Using brain-computer interaction and multimodal virtual-reality for augmenting stroke neurorehabilitation

    Get PDF
    Every year millions of people suffer from stroke resulting to initial paralysis, slow motor recovery and chronic conditions that require continuous reha bilitation and therapy. The increasing socio-economical and psychological impact of stroke makes it necessary to find new approaches to minimize its sequels, as well as novel tools for effective, low cost and personalized reha bilitation. The integration of current ICT approaches and Virtual Reality (VR) training (based on exercise therapies) has shown significant improve ments. Moreover, recent studies have shown that through mental practice and neurofeedback the task performance is improved. To date, detailed in formation on which neurofeedback strategies lead to successful functional recovery is not available while very little is known about how to optimally utilize neurofeedback paradigms in stroke rehabilitation. Based on the cur rent limitations, the target of this project is to investigate and develop a novel upper-limb rehabilitation system with the use of novel ICT technolo gies including Brain-Computer Interfaces (BCI’s), and VR systems. Here, through a set of studies, we illustrate the design of the RehabNet frame work and its focus on integrative motor and cognitive therapy based on VR scenarios. Moreover, we broadened the inclusion criteria for low mobility pa tients, through the development of neurofeedback tools with the utilization of Brain-Computer Interfaces while investigating the effects of a brain-to-VR interaction.Todos os anos, milho˜es de pessoas sofrem de AVC, resultando em paral isia inicial, recupera¸ca˜o motora lenta e condic¸˜oes cr´onicas que requerem re abilita¸ca˜o e terapia cont´ınuas. O impacto socioecon´omico e psicol´ogico do AVC torna premente encontrar novas abordagens para minimizar as seque las decorrentes, bem como desenvolver ferramentas de reabilita¸ca˜o, efetivas, de baixo custo e personalizadas. A integra¸c˜ao das atuais abordagens das Tecnologias da Informa¸ca˜o e da Comunica¸ca˜o (TIC) e treino com Realidade Virtual (RV), com base em terapias por exerc´ıcios, tem mostrado melhorias significativas. Estudos recentes mostram, ainda, que a performance nas tare fas ´e melhorada atrav´es da pra´tica mental e do neurofeedback. At´e a` data, na˜o existem informac¸˜oes detalhadas sobre quais as estrat´egias de neurofeed back que levam a uma recupera¸ca˜o funcional bem-sucedida. De igual modo, pouco se sabe acerca de como utilizar, de forma otimizada, o paradigma de neurofeedback na recupera¸c˜ao de AVC. Face a tal, o objetivo deste projeto ´e investigar e desenvolver um novo sistema de reabilita¸ca˜o de membros supe riores, recorrendo ao uso de novas TIC, incluindo sistemas como a Interface C´erebro-Computador (ICC) e RV. Atrav´es de um conjunto de estudos, ilus tramos o design do framework RehabNet e o seu foco numa terapia motora e cognitiva, integrativa, baseada em cen´arios de RV. Adicionalmente, ampli amos os crit´erios de inclus˜ao para pacientes com baixa mobilidade, atrav´es do desenvolvimento de ferramentas de neurofeedback com a utilizac¸˜ao de ICC, ao mesmo que investigando os efeitos de uma interac¸˜ao c´erebro-para-RV

    Reexamining argumentativeness and resistance to persuasion

    Get PDF
    A recently developed receiver characteristic, argumentativeness, was examined for its relations to attitude change and information processing in persuasive communication. Generally thought to be a flowed personality trait, argumentativeness is currently being regarded in communication studies as a beneficial personality trait that correlates with other qualities such as high grade point average, dynamism in speech, achievement orientation, competitiveness and leadership behavior. This study examined the effect of argumentativeness on persuasion. It was predicted that high argumentative would be more resistant to persuasion, yet the findings show that, with a strong message, high argumentative are more likely to be persuaded by the message. The number of thoughts generated by high argumentative contrary to the message was predicted to be higher than low argumentative, when presented with a strong argument the high argumentative were more accepting of the message and produced fewer thoughts against the message. A comparison of argumentativeness between males and females was also undertaken. This research indicated that, although a higher percentage of men were argumentative than women, the difference was not significant. Implications of the study and suggestions for future research were discussed

    Robot navigation using brain-computer interfaces

    Get PDF

    Motor priming in virtual reality can augment motor-imagery training efficacy in restorative brain-computer interaction: a within-subject analysis

    Get PDF
    The use of Brain-Computer Interface (BCI) technology in neurorehabilitation provides new strategies to overcome stroke-related motor limitations. Recent studies demonstrated the brain's capacity for functional and structural plasticity through BCI. However, it is not fully clear how we can take full advantage of the neurobiological mechanisms underlying recovery and how to maximize restoration through BCI. In this study we investigate the role of multimodal virtual reality (VR) simulations and motor priming (MP) in an upper limb motor-imagery BCI task in order to maximize the engagement of sensory-motor networks in a broad range of patients who can benefit from virtual rehabilitation training.info:eu-repo/semantics/publishedVersio

    Brain-controlled serious games for cultural heritage

    Get PDF

    Eye gaze correlates of motor impairment in VR observation of motor actions

    Get PDF
    Introduction: This article is part of the Focus Theme of Methods of Information in Medicine on “Methodologies, Models and A lgorithms for Patients Rehabilitation”. Objective: Identify eye gaze correlates of motor impairment in a virtual reality motor observation task in a study with healthy participants and stroke patients. Methods: Participants consisted of a group of healthy subjects (N = 20) and a group of stroke survivors (N = 10). Both groups were required to observe a simple reach-and-grab and place-and-release task in a virtual environment. Additionally, healthy subjects were required to observe the task in a normal condition and a constrained movement condition. Eye movements were recorded during the observation task for later analysis.info:eu-repo/semantics/publishedVersio

    Brain–computer interfacing with interactive systems-Case study 2

    Get PDF
    info:eu-repo/semantics/publishedVersio

    Quantifying cognitive-motor interference in virtual reality training after stroke: the role of interfaces

    Get PDF
    Globally, stroke is the second leading cause of death above the age of 60 years, with the actual number of strokes to increase because of the ageing population. Stroke results into chronic conditions, loss of independence, affecting both the families of stroke survivors but also public health systems. Virtual Reality (VR) for rehabilitation is considered a novel and effective low-cost approach to re-train motor and cognitive function through strictly defined training tasks in a safe simulated environment. However, little is known about how the choice of VR interfacing technology affects motor and cognitive performance, or what the most cost-effective rehabilitation approach for patients with different prognostics is. In this paper we assessed the effect of four different interfaces in the training of the motor and cognitive domains within a VR neurorehabilitation task. In this study we have evaluated the effect of training using 2-dimensional and 3-dimensional as well as traditional and natural user interfaces with both stroke survivors and healthy participants. Results indicate that 3-dimensional interfaces contribute towards better results in the motor domain at the cost of lower performance in the cognitive domain, suggesting the use 2-dimensional natural user interfaces as a trade-off. Our results provide useful pointers for future directions towards a cost-effective and meaningful interaction in virtual rehabilitation tasks in both motor and cognitive domains.info:eu-repo/semantics/publishedVersio

    Finding the optimal time window for increased classification accuracy during motor imagery

    Get PDF
    Motor imagery classification using electroencephalography is based on feature extraction over a length of time, and different configurations of settings can alter the performance of a classifier. Nevertheless, there is a lack of standardized settings for motor imagery classification. This work analyzes the effect of age on motor imagery training performance for two common spatial pattern-based classifier pipelines and various configurations of timing parameters, such as epochs, windows, and offsets. Results showed significant (p ≤ 0.01) inverse correlations between performance and feature quantity, as well as between performance and epoch/window ratio.info:eu-repo/semantics/publishedVersio
    corecore