26 research outputs found
Neural networks involved in mathematical thinking: evidence from linear and non-linear analysis of electroencephalographic activity
Using linear and non-linear methods, electroencephalographic (EEG) signals were measured at various brain regions to provide information regarding patterns of local and coordinated activity during performance of three arithmetic tasks (number comparison, single-digit multiplication, and two-digit multiplication) and two control tasks that did not require arithmetic operations. It was hypothesized that these measures would reveal the engagement of local and increasingly complex cortical networks as a function of task specificity and complexity. Results indicated regionally increased neuronal signalling as a function of task complexity at frontal, temporal and parietal brain regions, although more robust task-related changes in EEG-indices of activation were derived over the left hemisphere. Both linear and non-linear indices of synchronization among EEG signals recorded from over different brain regions were consistent with the notion of more "local" processing for the number comparison task. Conversely, multiplication tasks were associated with a widespread pattern of distant signal synchronizations, which could potentially indicate increased demands for neural networks cooperation during performance of tasks that involve a greater number of cognitive operations
Graphical analysis of current-voltage characteristics in memristive interfaces
A graphical representation of current-voltage (IV) measurements of typical memristive interfaces at constant temperature is presented. This is the starting point to extract relevant microscopic information of the parameters that control the electrical properties of a device based on a particular metal-oxide interface. The convenience of the method is illustrated presenting some examples where the IV characteristics were simulated in order to gain insight into the influence of the fitting parameters.Fil: Acha, Carlos Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentin
Working memory in schizophrenia: an EEG study using power spectrum and coherence analysis to estimate cortical activation and network behavior
This study examined regional cortical activations and cortico-cortical connectivity in a group of 20 high-functioning patients with schizophrenia and 20 healthy controls matched for age and sex during a 0- and a 2-back working memory (WM) task. An earlier study comparing schizophrenia patients with education level-matched healthy controls revealed less "optimally" organized network during the 2-back task, whereas a second study with healthy volunteers had suggested that the degree of cortical organization may be inversely proportional to educational level (less optimal functional connectivity in better educated individuals interpreted as the result of higher efficiency). In the present study, both groups succeeded in the 2-back WM task although healthy individuals had generally attained a higher level of education. First absolute power spectrum of the different frequency bands corresponding to the electrodes of each lobe was calculated. Then the mean values of coherence were calculated as an index of the average synchronization to construct graphs in order to characterize local and large scale topological patterns of cortico-cortical connectivity. The power spectra analyses showed signs of hypofrontality in schizophrenics with an asymmetry. Additionally, differences between the groups with greater changes during WM in healthy individuals were visible in all lobes more on the left side. The graph parameter results indicated decreased small-world architecture i.e. less optimal cortico-cortical functional organization in patients as compared to controls. These findings are consistent with the notion of aberrant neural organization in schizophrenics which is nevertheless sufficient in supporting adequate task performance. © 2008 Springer Science+Business Media, LLC
Dynamic task-specific brain network connectivity in children with severe reading difficulties
We investigated patterns of sensor-level functional connectivity derived from single-trial whole-head magnetoencephalography data during a pseudoword reading and a letter-sound naming task in children with reading difficulties (RD) and children with no reading impairments (NI). The Phase Lag Index (PLI), a linear and nonlinear estimator, computed for each pair of sensors, was used to construct graphs and obtain estimates of local and global network efficiency according to graph theory. In the 8–13 Hz (alpha band) and 20–30 Hz (gamma band) range, RD students showed significantly lower global efficiency than NI children, for the entire MEG recording epoch. RD students also displayed reduced local network efficiency in the alpha band. Correlations between phonological decoding ability and graph metrics were particularly evident during the task that posed significant demands for phonological decoding, and followed distinct time courses depending on signal frequency. Results are consistent with the notion of task-dependent, aberrant long- and short-range functional connectivity in RD children