106 research outputs found

    Magneto-optical response of layers of semiconductor quantum dots and nanorings

    Get PDF
    In this paper a comparative theoretical study was made of the magneto-optical response of square lattices of nanoobjects (dots and rings). Expressions for both the polarizability of the individual objects as their mutual electromagnetic interactions (for a lattice in vacuum) was derived. The quantum-mechanical part of the derivation is based upon the commonly used envelope function approximation. The description is suited to investigate the optical response of these layers in a narrow region near the interband transitions onset, particularly when the contribution of individual level pairs can be separately observed. A remarkable distinction between clearly quantum-mechanical and classical electromagnetic behavior was found in the shape and volume dependence of the polarizability of the dots and rings. This optical response of a single plane of quantum dots and nanorings was explored as a function of frequency, magnetic field, and angle of incidence. Although the reflectance of these layer systems is not very strong, the ellipsometric angles are large. For these isolated dot-ring systems they are of the order of magnitude of degrees. For the ring systems a full oscillation of the optical Bohm-Ahronov effect could be isolated. Layers of dots do not display any remarkable magnetic field dependence. Both type of systems, dots and rings, exhibit an outspoken angular-dependent dichroism of quantum-mechanical origin

    Is an Automatic Control Algorithm Necessary for Centrifugal Pumps?

    Get PDF
    In order to meet physiologic changes in LVAD patients, VAD manufacturers have been developing automatic control algorithms for rotary blood pumps. However, whether an automatic control algorithm is required for normal physiological functioning is unknown. Physiological patterns may be monitored by analyzing daily VAD parameter data (Speed, Power, and Estimated Flow) as acquired by the HeartWare® LVAS Controller. Experiment: Log files from patients supported on the HeartWare® LVAS which contained VAD parameter data (logged at 15minute intervals) were analyzed for daily performance under various physiological conditions while a constant VAD Speed was maintained. A 12-point moving average of Estimated Flow was calculated to eliminate erratic deviation in flow and provide a visual reference of circadian rhythm. Resulting data was analyzed and presented in a weekly viewable time frame. O\u27Driscoll, G., Tamez, D., & Voskoboynikov, N. (2008). Is an automatic control algorithm necessary for centrifugal pumps? Journal of Cardiac Failure, 14(6), S53. doi:10.1016/j.cardfail.2008.06.167 ISSN: 1532-841

    Electron Correlations in a Quantum Dot with Bychkov-Rashba Coupling

    Full text link
    We report on a theoretical approach developed to investigate the influence of Bychkov-Rashba interaction on a few interacting electrons confined in a quantum dot. We note that the spin-orbit coupling profoundly influences the energy spectrum of interacting electrons in a quantum dot. Inter-electron interaction causes level crossings in the ground state and a jump in magnetization. As the coupling strength is increased, that jump is shifted to lower magnetic fields. Low-field magnetization will therefore provide a direct probe of the spin-orbit coupling strength in a quantum dot

    Spin-orbit coupling and intrinsic spin mixing in quantum dots

    Full text link
    Spin-orbit coupling effects are studied in quantum dots in InSb, a narrow-gap material. Competition between different Rashba and Dresselhaus terms is shown to produce wholesale changes in the spectrum. The large (and negative) gg-factor and the Rashba field produce states where spin is no longer a good quantum number and intrinsic flips occur at moderate magnetic fields. For dots with two electrons, a singlet-triplet mixing occurs in the ground state, with observable signatures in intraband FIR absorption, and possible importance in quantum computation.Comment: REVTEX4 text with 3 figures (high resolution figs available by request). Submitted to PR

    Two-dimensional electron scattering in regions of nonuniform spin-orbit coupling

    Get PDF
    We present a theoretical study of elastic spin-dependent electron scattering caused by a nonuniform Rashba spin-orbit coupling strength. Using the spin-generalized method of partial waves the scattering amplitude is exactly derived for the case of a circular shape of scattering region. We found that the polarization of the scattered waves are strongly anisotropic functions of the scattering angle. This feature can be utilized to design a good all-electric spin-polarizer. General properties of the scattering process are also investigated in the high and low energy limits.Comment: 4 pages, 3 figure

    Spin splitting and precession in quantum dots with spin-orbit coupling: the role of spatial deformation

    Get PDF
    Extending a previous work on spin precession in GaAs/AlGaAs quantum dots with spin-orbit coupling, we study the role of deformation in the external confinement. Small elliptical deformations are enough to alter the precessional characteristics at low magnetic fields. We obtain approximate expressions for the modified gg factor including weak Rashba and Dresselhaus spin-orbit terms. For more intense couplings numerical calculations are performed. We also study the influence of the magnetic field orientation on the spin splitting and the related anisotropy of the gg factor. Using realistic spin-orbit strengths our model calculations can reproduce the experimental spin-splittings reported by Hanson et al. (cond-mat/0303139) for a one-electron dot. For dots containing more electrons, Coulomb interaction effects are estimated within the local-spin-density approximation, showing that many features of the non-iteracting system are qualitatively preserved.Comment: 7 pages, 7 figure

    Effect of the Surface on the Electron Quantum Size Levels and Electron g-Factor in Spherical Semiconductor Nanocrystals

    Full text link
    The structure of the electron quantum size levels in spherical nanocrystals is studied in the framework of an eight--band effective mass model at zero and weak magnetic fields. The effect of the nanocrystal surface is modeled through the boundary condition imposed on the envelope wave function at the surface. We show that the spin--orbit splitting of the valence band leads to the surface--induced spin--orbit splitting of the excited conduction band states and to the additional surface--induced magnetic moment for electrons in bare nanocrystals. This additional magnetic moment manifests itself in a nonzero surface contribution to the linear Zeeman splitting of all quantum size energy levels including the ground 1S electron state. The fitting of the size dependence of the ground state electron g factor in CdSe nanocrystals has allowed us to determine the appropriate surface parameter of the boundary conditions. The structure of the excited electron states is considered in the limits of weak and strong magnetic fields.Comment: 11 pages, 4 figures, submitted to Phys. Rev.

    Electronic spin precession in semiconductor quantum dots with spin-orbit coupling

    Full text link
    The electronic spin precession in semiconductor dots is strongly affected by the spin-orbit coupling. We present a theory of the electronic spin resonance at low magnetic fields that predicts a strong dependence on the dot occupation, the magnetic field and the spin-orbit coupling strength. Coulomb interaction effects are also taken into account in a numerical approach.Comment: 5 pages, 4 figure

    Dynamical spin-electric coupling in a quantum dot

    Full text link
    Due to the spin-orbital coupling in a semiconductor quantum dot, a freely precessing electron spin produces a time-dependent charge density. This creates a sizeable electric field outside the dot, leading to promising applications in spintronics. The spin-electric coupling can be employed for non-invasive single spin detection by electrical methods. We also consider a spin relaxation mechanism due to long-range coupling to electrons in gates and elsewhere in the system, and find a contribution comparable to, and in some cases dominant over previously discussed mechanisms.Comment: 4 pages, 2 figure
    corecore