106 research outputs found
Magneto-optical response of layers of semiconductor quantum dots and nanorings
In this paper a comparative theoretical study was made of the magneto-optical response of square lattices of nanoobjects (dots and rings). Expressions for both the polarizability of the individual objects as their mutual electromagnetic interactions (for a lattice in vacuum) was derived. The quantum-mechanical part of the derivation is based upon the commonly used envelope function approximation. The description is suited to investigate the optical response of these layers in a narrow region near the interband transitions onset, particularly when the contribution of individual level pairs can be separately observed. A remarkable distinction between clearly quantum-mechanical and classical electromagnetic behavior was found in the shape and volume dependence of the polarizability of the dots and rings. This optical response of a single plane of quantum dots and nanorings was explored as a function of frequency, magnetic field, and angle of incidence. Although the reflectance of these layer systems is not very strong, the ellipsometric angles are large. For these isolated dot-ring systems they are of the order of magnitude of degrees. For the ring systems a full oscillation of the optical Bohm-Ahronov effect could be isolated. Layers of dots do not display any remarkable magnetic field dependence. Both type of systems, dots and rings, exhibit an outspoken angular-dependent dichroism of quantum-mechanical origin
Is an Automatic Control Algorithm Necessary for Centrifugal Pumps?
In order to meet physiologic changes in LVAD patients, VAD manufacturers have been developing automatic control algorithms for rotary blood pumps. However, whether an automatic control algorithm is required for normal physiological functioning is unknown. Physiological patterns may be monitored by analyzing daily VAD parameter data (Speed, Power, and Estimated Flow) as acquired by the HeartWare® LVAS Controller. Experiment: Log files from patients supported on the HeartWare® LVAS which contained VAD parameter data (logged at 15minute intervals) were analyzed for daily performance under various physiological conditions while a constant VAD Speed was maintained. A 12-point moving average of Estimated Flow was calculated to eliminate erratic deviation in flow and provide a visual reference of circadian rhythm. Resulting data was analyzed and presented in a weekly viewable time frame.
O\u27Driscoll, G., Tamez, D., & Voskoboynikov, N. (2008). Is an automatic control algorithm necessary for centrifugal pumps? Journal of Cardiac Failure, 14(6), S53. doi:10.1016/j.cardfail.2008.06.167
ISSN: 1532-841
Electron Correlations in a Quantum Dot with Bychkov-Rashba Coupling
We report on a theoretical approach developed to investigate the influence of
Bychkov-Rashba interaction on a few interacting electrons confined in a quantum
dot. We note that the spin-orbit coupling profoundly influences the energy
spectrum of interacting electrons in a quantum dot. Inter-electron interaction
causes level crossings in the ground state and a jump in magnetization. As the
coupling strength is increased, that jump is shifted to lower magnetic fields.
Low-field magnetization will therefore provide a direct probe of the spin-orbit
coupling strength in a quantum dot
Spin-orbit coupling and intrinsic spin mixing in quantum dots
Spin-orbit coupling effects are studied in quantum dots in InSb, a narrow-gap
material. Competition between different Rashba and Dresselhaus terms is shown
to produce wholesale changes in the spectrum. The large (and negative)
-factor and the Rashba field produce states where spin is no longer a good
quantum number and intrinsic flips occur at moderate magnetic fields. For dots
with two electrons, a singlet-triplet mixing occurs in the ground state, with
observable signatures in intraband FIR absorption, and possible importance in
quantum computation.Comment: REVTEX4 text with 3 figures (high resolution figs available by
request). Submitted to PR
Two-dimensional electron scattering in regions of nonuniform spin-orbit coupling
We present a theoretical study of elastic spin-dependent electron scattering
caused by a nonuniform Rashba spin-orbit coupling strength. Using the
spin-generalized method of partial waves the scattering amplitude is exactly
derived for the case of a circular shape of scattering region. We found that
the polarization of the scattered waves are strongly anisotropic functions of
the scattering angle. This feature can be utilized to design a good
all-electric spin-polarizer. General properties of the scattering process are
also investigated in the high and low energy limits.Comment: 4 pages, 3 figure
Spin splitting and precession in quantum dots with spin-orbit coupling: the role of spatial deformation
Extending a previous work on spin precession in GaAs/AlGaAs quantum dots with
spin-orbit coupling, we study the role of deformation in the external
confinement. Small elliptical deformations are enough to alter the precessional
characteristics at low magnetic fields. We obtain approximate expressions for
the modified factor including weak Rashba and Dresselhaus spin-orbit terms.
For more intense couplings numerical calculations are performed. We also study
the influence of the magnetic field orientation on the spin splitting and the
related anisotropy of the factor. Using realistic spin-orbit strengths our
model calculations can reproduce the experimental spin-splittings reported by
Hanson et al. (cond-mat/0303139) for a one-electron dot. For dots containing
more electrons, Coulomb interaction effects are estimated within the
local-spin-density approximation, showing that many features of the
non-iteracting system are qualitatively preserved.Comment: 7 pages, 7 figure
Effect of the Surface on the Electron Quantum Size Levels and Electron g-Factor in Spherical Semiconductor Nanocrystals
The structure of the electron quantum size levels in spherical nanocrystals
is studied in the framework of an eight--band effective mass model at zero and
weak magnetic fields. The effect of the nanocrystal surface is modeled through
the boundary condition imposed on the envelope wave function at the surface. We
show that the spin--orbit splitting of the valence band leads to the
surface--induced spin--orbit splitting of the excited conduction band states
and to the additional surface--induced magnetic moment for electrons in bare
nanocrystals. This additional magnetic moment manifests itself in a nonzero
surface contribution to the linear Zeeman splitting of all quantum size energy
levels including the ground 1S electron state. The fitting of the size
dependence of the ground state electron g factor in CdSe nanocrystals has
allowed us to determine the appropriate surface parameter of the boundary
conditions. The structure of the excited electron states is considered in the
limits of weak and strong magnetic fields.Comment: 11 pages, 4 figures, submitted to Phys. Rev.
Electronic spin precession in semiconductor quantum dots with spin-orbit coupling
The electronic spin precession in semiconductor dots is strongly affected by
the spin-orbit coupling. We present a theory of the electronic spin resonance
at low magnetic fields that predicts a strong dependence on the dot occupation,
the magnetic field and the spin-orbit coupling strength. Coulomb interaction
effects are also taken into account in a numerical approach.Comment: 5 pages, 4 figure
Dynamical spin-electric coupling in a quantum dot
Due to the spin-orbital coupling in a semiconductor quantum dot, a freely
precessing electron spin produces a time-dependent charge density. This creates
a sizeable electric field outside the dot, leading to promising applications in
spintronics. The spin-electric coupling can be employed for non-invasive single
spin detection by electrical methods. We also consider a spin relaxation
mechanism due to long-range coupling to electrons in gates and elsewhere in the
system, and find a contribution comparable to, and in some cases dominant over
previously discussed mechanisms.Comment: 4 pages, 2 figure
- …
