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Two-dimensional electron scattering in regions of nonuniform spin-orbit coupling
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We present a theoretical study of elastic spin-dependent electron scattering caused by a nonuni-
form Rashba spin-orbit coupling strength. Using the spin-generalized method of partial waves the
scattering amplitude is exactly derived for the case of a circular shape of scattering region. We found
that the polarization of the scattered waves are strongly anisotropic functions of the scattering an-
gle. This feature can be utilized to design a good all-electric spin-polarizer. General properties of
the scattering process are also investigated in the high and low energy limits.
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The presence of the spin-orbit interaction (SOI) de-
stroys the spin-rotational symmetry, therefore the prop-
erties of the scattering get influenced by the spin state of
the incident particle1. The SOI may lead to the asym-
metry of the differential scattering cross section (skew-
scattering), and it may affect the polarization vector of
the incident beam1,2,3. In nuclear physics, this prop-
erty has been utilized to generate spin-polarized neutrons
from an unpolarized beam by scattering it on a zero-
spin nucleus4. In low-dimensional semiconductors, sig-
nificant spin-splitting in the absence of a magnetic field
is observed, which is mostly attributed to the SOI of
the Rashba type arising from the structural inversion
asymmetry of the hosting heterostructure5. Promising
spin transistor application has been proposed exploiting
the tunability of the strength of the Rashba coupling by
an external electrostatic field6, and initiated an inten-
sive research in the field of spintronics7. To generate
spin-polarized electron beams, which is a fundamental
problem in spintronics, several mechanisms have been
proposed8.
Recently, all-electrical (without externally applied

magnetic fields) spin-polarizer devices have been
suggested9 utilizing the properly designed spatial modu-
lation of the Rashba SOI strength α. The spatial vari-
ation of the Rashba strength, which is proportional to
the magnitude of the electric field applied perpendicular
to the two-dimensional electron gas (2DES) systems, can
be achieved by small biased electrodes on the top of the
heterostructure.
In this work we show that the polarization of the elas-

tically scattered wave caused by a nonuniform Rashba
strength becomes strongly anisotropic, ie depends on the
angle (called scattering angle) between the directions of
the incident electron beam and that of the scattering
wave. We also demonstrate that (i) the differential scat-
tering cross section has a skew-scattering feature1,2,3 for
polarized incoming electron beams, (ii) using experimen-
tally relevant material parameters10 an almost full po-
larization of unpolarized incident electron beams can be
observed in a narrow window of scattering angles. More-
over, our analytical calculations allows us to derive uni-
versal properties for the scattering amplitude and the

polarization Psc in the high and low energy limits.
To this end, we consider a system in which the Rashba

SOI strength α(r) varies on the plane of the 2DES as
α(r) = α1Θ(a− |r|) +α2Θ(|r| − a), where a is the radius
of the scattering center, Θ is the Heaviside function and
r = (x, y) defines the position on the plane (see Fig. 1).
The Hamiltonian of the system in the one-band effective-
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FIG. 1: (Color online) The plane wave of an incident electron
with wave vector k gets scattered by a scattering region de-
fined by a nonuniform Rashba coupling strength α(r) (see the
text), and its portion propagates along the direction given by
the scattering angle ϕ.

mass approximation is given by

H =
p2

2m∗ +
α(r)

2~
(σxpy−σypx)+(σxpy−σypx)

α(r)

2~
, (1)

where p = (px, py) is the momentum operator, m∗ is the
effective mass of the electron, σx, σy are the Pauli matri-
ces. Note that this Hamiltonian is symmetrized to make
it Hermitian. For simplicity, we set α2 = 0, and α1 is a
constant value throughout this paper (our analysis can
easily be extended to the case α2 6= 0). Recently, similar
scattering problems have been studied with uniform α(r)
and an electrostatic potential varying in the plane of the
2DES11,12.
The spin-density matrix2,3 is proved to be useful for

treating the coupled spin-charge quantum transport in
spintronic devices13. Employing this formalism allows
us to derive explicit formulas for the differential and the
total scattering cross section, and the polarization Psc of
the scattered wave in terms of the polarization Pinc of
the incident electron beam.
As can be seen below, the physics of the scattering of

electrons shown in Fig. 1 is fundamentally different from
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the Mott scattering originating from the spin-dependent
scattering potential1,2,3,4 and the spin-dependent two-
dimensional electron scattering from quantum dots and
antidots studied in Ref. 14. In these scattering prob-
lems the polarization Psc of the scattered wave is al-
ways perpendicular to the scattering plane for unpolar-
ized (Pinc = 0) incident particles of spin 1/2, while in
our scattering problem this is not the case in general.
First, we briefly outline the spin-density matrix ap-

proach of our spin-dependent scattering problem. The
incident plane wave with wave number k has the form
ψinc(r) = eikr |γ〉 , where |γ〉 denotes the spin state. In
two dimensions the form of the scattered wave asymptot-
ically far from the scattering center is

ψsc(r, ϕ) ∼ eikr√
r
f(ϕ) |γ〉, (2)

where f(ϕ) is the scattering amplitude (2 × 2 matrix in
spin space), and depends on the scattering angle ϕ and k.
The scattering amplitude f(ϕ) can be expanded in terms
of the unit matrix σ0 and the vector σ = (σ1, σ2, σ3)
formed from the three Pauli matrices (for convenience,
we use σ1 ≡ σx, σ2 ≡ σy , σ3 ≡ σz notations for the three
Pauli matrices):

f(ϕ) =
3
∑

k=0

uk(ϕ)σk = u0(ϕ)σ0 + u(ϕ) · σ, (3)

where u0 and u = (u1, u2, u3) can only be obtained by
solving the Schrödinger equation for the scattering prob-
lem.
The spin-density matrix ρinc = 1

2 (σ0 +σ ·Pinc) of the

incident wave for a given polarization Pinc = 〈σ〉inc =
Tr (ρinc σ) is related to the spin-density matrix ρsc of the
scattered wave as2

ρsc =
fρincf†

Tr (fρincf†)
, (4)

where Tr denotes the trace in the spin states. Then using
(3) the differential scattering cross section reads as

dσ

dϕ
= Tr

(

fρincf†
)

= c+ v ·Pinc, where (5a)

c =
3
∑

k=0

|uk|2 and v = 2Re(u∗0u)− i(u× u∗). (5b)

Here Re(·) denotes the real part of the argument, and
the star stands for the complex conjugation. Note that,
in general, u × u∗ is not zero but it is always a purely
imaginary vector.
Similarly, we found for the polarization vector Psc of

the scattered beam

Psc = 〈σ〉sc = Tr (ρsc σ) =
w +MPinc

c+ v ·Pinc
, (6a)

where w = 2Re(u∗0u) + i(u×u∗) and the components of
the matrix M:

Mij =
(

|u0|2 − |u|2
)

δij + 2Re (u∗i uj)

+ 2
3
∑

k=1

εijk Im (u∗0uk), (6b)

with i, j = 1, 2, 3, and δij and εijk denote the Kronecker
delta and the Levi-Civita symbol, respectively. Here
Im(·) stands for the imaginary part of the argument. The
components of M are real numbers.
The spin-dependent form of the optical theorem can

be derived by considering the scattering time-evolution
of Gaussian wave packets, and we obtain:

σtot =

√

8π

k
Im
{

e−iπ
4

[

u0(0) + u(0) ·Pinc
]}

, (7)

where σtot is the total scattering cross section.
As can be seen, all physical quantities are expressed

in terms of the coefficients uk(ϕ) which define the scat-
tering amplitude f(ϕ) in Eq. (3). To calculate these un-
known coefficients uk(ϕ) for our scattering problem we
apply the method of partial waves, similarly as in Ref. 11.
Choosing the spin quantization axis along the z axis, the
eigenspinors (the eigenvectors of the Pauli matrix σz) are

γσ, where γ+ = (1, 0)
T
for σ = +1, and γ− = (0, 1)

T
for

σ = −1 (T stands for the transposed of vectors). Here-
after, we write ± for the spin quantum number σ = ±1.
Since the Hamiltonian H in Eq. (1) commutes with the
total angular momentum operator Jz = −i~∂ϕ + ~

2 σz ,
any partial wave, which is a solution of the Schrödinger
equation can be labeled by the quantum number j ∈ J

and the spin quantum number σ of the incident electron.
Here J = {· · · ,− 3

2 ,− 1
2 ,

1
2 ,

3
2 , · · · }. We chose the direc-

tion of the propagation of the incoming plane wave along
the x direction. Then, in polar coordinates, the incoming
plane wave with spin quantum number σ and energy E
can be expanded in terms of partial waves15:

φσ(r) = eikxγσ =
1

2
√−σ

∑

j∈J

ij+1/2
[

h
(1)
j,σ(r) + h

(2)
j,σ(r)

]

,

(8)

where h
(1,2)
j,σ (r) = H

(1,2)
j−σ/2(kr)e

i(j−σ/2)ϕγσ, are the outgo-

ing (superscript 1) and incoming (superscript 2) waves,

and k = |k| =
√
2m∗E/~ is the magnitude of the wave

vector. Here H
(1,2)
m (z) are the 1st and 2nd kind of Hankel

functions of order m.
First, we consider the individual partial waves. The

partial waves outside the scattering region (r > a) have

the form ψ
(N)
j,σ = h

(2)
j,σ + S

(j)
σ,σh

(1)
j,σ + S

(j)
−σ,σh

(1)
j,−σ, while in-

side the scattering region (r < a) they can be written as

ψ
(R)
j,σ = A

(j)
+,σχj,+ +A

(j)
−,σχj,−, where

χj,τ (r) =

(

τJj−1/2(qτ r)e
−iϕ/2

Jj+1/2(qτ r)e
iϕ/2

)

eijϕ, (9)
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and Jm(x) is the Bessel function, qτ =
√

k2 + k2so− τkso,
kso = α1m

∗/~2 and τ = ±1 is the spin branch index16.

The coefficients A
(j)
±,± and S

(j)
±,± can be calculated from

the boundary conditions17:

ψ
(N)
j,σ

r=a
= ψ

(R)
j,σ

r=a
, (10a)

∂rψ
(N)
j,σ

r=a
= (∂r − iksoσϕ)ψ

(R)
j,σ

r=a
, (10b)

valid for all j ∈ J and σ = ±1, and σϕ = − sinϕσx +
cosϕσy. For a given j these equations involving Bessel
and Hankel functions result in eight linear inhomoge-

neous equations for the eight unknown coefficients A
(j)
±,±

and S
(j)
±,±. The explicit forms of the equations are in-

dependent of the angle ϕ. These coefficients can easily
be calculated numerically. Note that the following ex-

act relations hold S
(j)
σ,σ = S

(−j)
−σ,−σ and S

(j)
−σ,σ = S

(j)
σ,−σ =

S
(−j)
−σ,σ = S

(−j)
σ,−σ for all j ∈ J and σ = ±1. To proceed

further, we assume that the coefficients S
(j)
±,± are known

from numerical calculations.
Outside the scattering region the complete wave func-

tion describing the scattering of the plane wave can be

decomposed as ψ
(N)
σ =

∑

j∈J

ψ
(N)
j,σ = φσ + ψ

(sc)
σ , where

ψ
(sc)
σ is the scattered wave. It is easy to show that

ψ
(N)
σ and ψ

(R)
σ =

∑

j∈J

ψ
(R)
j,σ satisfy the boundary condi-

tions (10). Using the Hankel’s asymptotic expansions15

we have h
(1)
j,σ(r) ∼

√

2
iπkr e

i(kr−(j−σ/2) π

2 ) ei(j−σ/2)ϕ γσ

valid for r ≫ a, and then the asymptotic form of the

scattered waves ψ
(sc)
σ can be calculated. Finally, Eq. (2)

yields 〈γσ|ψ(sc)
σ′ 〉 = eikr

√
r
fσ,σ′ , and using Eq. (3) we obtain

u0(ϕ) =
∑

j∈J+

Bj cos

(

j − 1

2

)

ϕ+ Cj cos

(

j +
1

2

)

ϕ,(11a)

u1(ϕ) = 2 sin (ϕ/2)
∑

j∈J+

Dj cos(jϕ), (11b)

u2(ϕ) = −2 cos (ϕ/2)
∑

j∈J+

Dj cos(jϕ), (11c)

u3(ϕ)= i
∑

j∈J+

Bj sin

(

j − 1

2

)

ϕ+ Cj sin

(

j +
1

2

)

ϕ,(11d)

where we introduced the notations Bj = (S
(j)
+,+−1), Cj =

(S
(j)
−,− − 1), Dj = S

(j)
−,+ and J+ = { 1

2 ,
3
2 , · · · }.

In numerical calculations the two dimensionless pa-
rameters characterizing the scattering process are ka and
ksoa. Figure 2 shows the asymmetric (skew-scattering)
feature of the differential scattering cross section calcu-
lated from (5) for different spin polarizations Pinc of
the incident electron beam. The scattering cross sec-
tions at a given scattering angle ϕ are different for spin
up and spin down polarization of an incident beam,

ie for Pinc and −Pinc. From Eq. (11) it follows that

3

2

1

0
900-90

d
σ/

d
ϕ

ϕ

a)

900-90

ϕ

b)

900-90

ϕ

c)

FIG. 2: Differential scattering cross sections (in units of a) as
functions of the scattering angle ϕ (in units of degrees) for spin

polarizations P
inc = 0, (±1, 0, 0)T (a), P

inc = 0, (0,±1, 0)T

(b) and P
inc = 0, (0, 0,±1)T (c) with dotted, solid and dashed

lines, respectively in each figures. The parameters are ka = 1
and ksoa = 1.

u(ϕ = 0) ∼ (0, 1, 0)
T
, therefore the optical theorem (7)

implies that the polarization dependence of the total scat-
tering cross section (the areas under the curves in Fig. 2)
takes the form σtot(P

inc) = c1+c2P
inc
y , where P inc

y is the
y component of the polarization vector of the incident
wave, and c1 and c2 depend only on ka and ksoa. Thus,
in Fig. 2a and c, and for Pinc = 0 the total scattering
cross sections are the same.
The magnitude of the polarization |Psc| of the scat-

tered waves obtained from Eq. (6) and the differential
scattering cross section are plotted in Fig. 3 for unpo-
larized (Pinc = 0) incident electron beam using experi-
mentally relevant parameters10. As can be seen from the
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FIG. 3: The magnitude of polarization |Psc| (main panel)
and the differential scattering cross section dσ/dϕ (left inset)
as functions of the scattering angle ϕ (in units of degrees) for
unpolarized (Pinc = 0) incident waves. The large scale ϕ (in
units of degrees) dependence of |Psc| is shown in the right
inset. The parameters are ka = 20 and ksoa = 4.

figure, the differential cross section is rather high and
the scattered beam is almost fully polarized for a narrow
window of angles. This result suggests an effective tool
for spin-filtering without using magnetic field.
We also studied the high energy limit of the scattering.

This is the case, when ka≫ 1, ie the Fermi wave length of
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the electron is much smaller than a. Then one can apply
the first Born approximation and it can be shown that
the scattering amplitude f ∼ σy . Thus, from (3) we have

u0 = 0 and u ∼ (0, 1, 0)T , while from (6) w = 0. There-
fore, for unpolarized incident electron beam (Pinc = 0)
the polarization of the scattered waves is negligible in the
high energy limit. However, a finite spin polarization can
arise even in the first Born approximation if an additional
electrostatic potential is present beside the spin-orbit in-
teraction, eg, in an imaging experiment11. In this case,
u0 and u2 are finite and it yields a finite value of Psc for
unpolarized incident beams.
In the opposite limit, ie for low energy limit (ka ≪

1) it is also possible to derive an analytical result for
the scattering amplitude and the polarization Psc of the
scattered waves. Keeping only the first order terms in

k/kso of S
(j)
±,± resulting from the boundary equations (10)

and that of uk(ϕ) in Eq. (11), it yields

Psc(ϕ) ≈ 2
k

kso
(− sinϕ, 1 + cosϕ, 0)

T
, (12)

valid for ka ≪ 1 and k ≪ kso and for unpolarized inci-
dent electron beams. We found an excellent agreement
between this result and that obtained from (6) with nu-
merically exact calculations. Similarly, it can be shown
that the differential scattering cross section is approxi-
mately isotropic (independent of the scattering angle ϕ)
in the low energy limit.

In conclusions, we have shown that for a circular shape
of region with non-zero Rashba coupling strength, the
scattering properties are strongly anisotropic, and the
scattered wave is well polarized in a narrow window of
the scattering directions. Such a nonuniform SOI can
be utilized to produce spin-polarized electrons in an all-
electric realization of spintronic devices.
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Zülicke, cond-mat/0512397.
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