4,321 research outputs found
Reaching consensus on a connected graph
We study a simple random process in which vertices of a connected graph reach
consensus through pairwise interactions. We compute outcome probabilities,
which do not depend on the graph structure, and consider the expected time
until a consensus is reached. In some cases we are able to show that this is
minimised by . We prove an upper bound for the case and give a
family of graphs which asymptotically achieve this bound. In order to obtain
the mean of the waiting time we also study a gambler's ruin process with
delays. We give the mean absorption time and prove that it monotonically
increases with for symmetric delays
The dynamics of Machiavellian intelligence
The "Machiavellian intelligence" hypothesis (or the "social brain"
hypothesis) posits that large brains and distinctive cognitive abilities of
humans have evolved via intense social competition in which social competitors
developed increasingly sophisticated "Machiavellian" strategies as a means to
achieve higher social and reproductive success. Here we build a mathematical
model aiming to explore this hypothesis. In the model, genes control brains
which invent and learn strategies (memes) which are used by males to gain
advantage in competition for mates. We show that the dynamics of intelligence
has three distinct phases. During the dormant phase only newly invented memes
are present in the population. During the cognitive explosion phase the
population's meme count and the learning ability, cerebral capacity
(controlling the number of different memes that the brain can learn and use),
and Machiavellian fitness of individuals increase in a runaway fashion. During
the saturation phase natural selection resulting from the costs of having large
brains checks further increases in cognitive abilities. Overall, our results
suggest that the mechanisms underlying the "Machiavellian intelligence"
hypothesis can indeed result in the evolution of significant cognitive
abilities on the time scale of 10 to 20 thousand generations. We show that
cerebral capacity evolves faster and to a larger degree than learning ability.
Our model suggests that there may be a tendency toward a reduction in cognitive
abilities (driven by the costs of having a large brain) as the reproductive
advantage of having a large brain decreases and the exposure to memes increases
in modern societies.Comment: A revised version has been published by PNA
Dynamics of alliance formation and the egalitarian revolution
Arguably the most influential force in human history is the formation of
social coalitions and alliances (i.e., long-lasting coalitions) and their
impact on individual power. In most great ape species, coalitions occur at
individual and group levels and among both kin and non-kin. Nonetheless, ape
societies remain essentially hierarchical, and coalitions rarely weaken social
inequality. In contrast, human hunter-gatherers show a remarkable tendency to
egalitarianism, and human coalitions and alliances occur not only among
individuals and groups, but also among groups of groups. Here, we develop a
stochastic model describing the emergence of networks of allies resulting from
within-group competition for status or mates between individuals utilizing
dyadic information. The model shows that alliances often emerge in a phase
transition-like fashion if the group size, awareness, aggressiveness, and
persuasiveness of individuals are large and the decay rate of individual
affinities is small. With cultural inheritance of social networks, a single
leveling alliance including all group members can emerge in several
generations. Our results suggest that a rapid transition from a hierarchical
society of great apes to an egalitarian society of hunter-gatherers (often
referred to as "egalitarian revolution") could indeed follow an increase in
human cognitive abilities. The establishment of stable group-wide egalitarian
alliances creates conditions promoting the origin of cultural norms favoring
the group interests over those of individuals.Comment: 37 pages, 15 figure
- …