10 research outputs found

    E3 Ubiquitin Ligases as Immunotherapeutic Target in Atherosclerotic Cardiovascular Disease

    Get PDF
    Chronic low-grade inflammation drives atherosclerosis and despite optimal pharmacological treatment of classical cardiovascular risk factors, one third of the patients with atherosclerotic cardiovascular disease has elevated inflammatory biomarkers. Additional anti-inflammatory strategies to target this residual inflammatory cardiovascular risk are therefore required. T-cells are a dominant cell type in human atherosclerotic lesions. Modulation of T-cell activation is therefore a potential strategy to target inflammation in atherosclerosis. Ubiquitination is an important regulatory mechanism of T-cell activation and several E3 ubiquitin ligases, including casitas B-lineage lymphoma proto-oncogene B (Cbl-B), itchy homolog (Itch), and gene related to anergy in lymphocytes (GRAIL), function as a natural brake on T-cell activation. In this review we discuss recent insights on the role of Cbl-B, Itch, and GRAIL in atherosclerosis and explore the therapeutic potential of these E3 ubiquitin ligases in cardiovascular medicine

    Statins and immune checkpoint inhibitors: a strategy to improve the efficacy of immunotherapy for cancer?

    No full text
    In the past decade, immune checkpoint inhibitor (ICI) therapy significantly improved the prognosis of patients with cancer. Despite impressive and often unprecedented response rates, a significant portion of the patients fails to benefit from this treatment. Additional strategies to improve ICI efficacy are therefore needed. The widespread clinical use of ICIs has increased our knowledge on the effects of the concomitant use of commonly prescribed drugs on the outcome of ICI treatment. A particular interesting class of drugs in this context are statins. These HMG-CoA reductase inhibitors, which are used to treat hypercholesterolemia and reduce the risk for atherosclerotic cardiovascular disease, are frequently used by patients with (advanced) cancer. This paper addresses the hypothesis that statins improve the efficacy of ICI therapy

    E3 Ubiquitin Ligases as Immunotherapeutic Target in Atherosclerotic Cardiovascular Disease

    No full text
    Chronic low-grade inflammation drives atherosclerosis and despite optimal pharmacological treatment of classical cardiovascular risk factors, one third of the patients with atherosclerotic cardiovascular disease has elevated inflammatory biomarkers. Additional anti-inflammatory strategies to target this residual inflammatory cardiovascular risk are therefore required. T-cells are a dominant cell type in human atherosclerotic lesions. Modulation of T-cell activation is therefore a potential strategy to target inflammation in atherosclerosis. Ubiquitination is an important regulatory mechanism of T-cell activation and several E3 ubiquitin ligases, including casitas B-lineage lymphoma proto-oncogene B (Cbl-B), itchy homolog (Itch), and gene related to anergy in lymphocytes (GRAIL), function as a natural brake on T-cell activation. In this review we discuss recent insights on the role of Cbl-B, Itch, and GRAIL in atherosclerosis and explore the therapeutic potential of these E3 ubiquitin ligases in cardiovascular medicine

    The Lipid Raft Component Stomatin Interacts with the Na+ Taurocholate Cotransporting Polypeptide (NTCP) and Modulates Bile Salt Uptake

    No full text
    The sodium taurocholate cotransporting polypeptide (NTCP) is expressed at the basolateral membrane of hepatocytes, where it mediates the uptake of conjugated bile acids and forms the hepatocyte entry receptor for the hepatitis B and D virus. Here, we aimed to identify novel protein-protein interactions that could play a role in the regulation of NTCP. To this end, NTCP was precipitated from HA-tagged hNTCP-expressing HepG2 cells, and chloride channel CLIC-like 1 (CLCC1) and stomatin were identified as interacting proteins by mass spectrometry. Interaction was confirmed by co-immunoprecipitation. NTCP, CLCC1 and stomatin were found at the plasma membrane in lipid rafts, as demonstrated by a combination of immunofluorescence, cell surface biotinylation and isolation of detergent-resistant membranes. Neither CLCC1 overexpression nor its knockdown had an effect on NTCP function. However, both stomatin overexpression and knockdown increased NTCP-mediated taurocholate uptake while NTCP abundance at the plasma membrane was only increased in stomatin depleted cells. These findings identify stomatin as an interactor of NTCP and show that the interaction modulates bile salt transport

    Adipocytes control haematopoiesis and inflammation through CD40 signaling

    No full text
    The co-stimulatory CD40-CD40L dyad plays an important role in chronic inflammatory diseases associated with ageing. Although CD40 is mainly expressed by immune cells, CD40 is also present on adipocytes. We aimed to delineate the role of adipocyte-CD40 in the aging haematopoietic system and evaluated the effects of adipocyte CD40 deficiency on cardiometabolic diseases. Adult adipocyte CD40-deficient mice (AdiCD40KO) mice had a decrease in bone marrow (BM) haematopoietic stem cells (Lin-Sca+cKit+, LSK) and common lymphoid progenitors, which was associated with increased BM adiposity and T-cell activation, along with elevated plasma corticosterone levels, a phenotype that became more pronounced with age. Atherosclerotic AdiCD40koApoE-/- (CD40AKO) mice also displayed changes in the LSK population, showing increased myeloid- and lymphoid multipotent progenitors, and augmented corticosterone levels. Increased T-cell activation could be observed in BM, spleen, and adipose tissue (AT), while B-cell numbers were decreased. Although atherosclerosis was reduced in CD40AKO mice, plaques contained more activated T-cells and larger necrotic cores. Analysis of peripheral AT in a diet-induced obesity model revealed that obese AdiCD40KO mice showed increased T-cell activation in AT and lymphoid organs, but exhibited decreased weight gain and improved insulin sensitivity, along with increased fat oxidation. In conclusion, adipocyte CD40 plays an important role in maintaining immune cell homeostasis in BM during ageing and chronic inflammatory diseases, particularly of the lymphoid populations. Although adipocyte CD40-deficiency reduces atherosclerosis burden and ameliorates diet-induced obesity, the accompanying T-cell activation may eventually aggravate cardiometabolic diseases

    Hyperlipidaemia elicits an atypical, T helper 1-like CD4<sup>+</sup>T-cell response:A key role for very low-density lipoprotein

    No full text
    Aims: Hyperlipidemia and T cell driven inflammation are important drivers of atherosclerosis, the main underlying cause of cardiovascular disease. Here, we detailed the effects of hyperlipidemia on T cells. Methods and results: In vitro, exposure of human and murine CD4+ T cells to very low-density lipoprotein (VLDL), but not to low-density lipoprotein (LDL) resulted in upregulation of Th1 associated pathways. VLDL was taken up via a CD36-dependent pathway and resulted in membrane stiffening and a reduction in lipid rafts. To further detail this response in vivo, T cells of mice lacking the LDL receptor (LDLr), which develop a strong increase in VLDL cholesterol and triglyceride levels upon high cholesterol feeding were investigated. CD4+ T cells of hyperlipidemic Ldlr-/-mice exhibited an increased expression of the C-X-C-chemokine receptor 3 (CXCR3) and produced more interferon-?(IFN-?). Gene set enrichment analysis identified IFN-?-mediated signaling as the most upregulated pathway in hyperlipidemic T cells. However, the classical Th1 associated transcription factor profile with strong upregulation of Tbet and Il12rb2 was not observed. Hyperlipidemia did not affect levels of the CD4+ T cell's metabolites involved in glycolysis or other canonical metabolic pathways but enhanced amino acids levels. However, CD4+ T cells of hyperlipidemic mice showed increased cholesterol accumulation and an increased arachidonic acid (AA) to docosahexaenoic acid (DHA) ratio, which was associated with inflammatory T cell activation. Conclusions: Hyperlipidemia, and especially its VLDL component induces an atypical Th1 response in CD4+ T cells. Underlying mechanisms include CD36 mediated uptake of VLDL, and an altered AA/DHA ratio

    Expert consensus document: Defining the major health modifiers causing atrial fibrillation: a roadmap to underpin personalized prevention and treatment

    No full text
    Despite remarkable advances in antiarrhythmic drugs, ablation procedures, and stroke-prevention strategies, atrial fibrillation (AF) remains an important cause of death and disability in middle-aged and elderly individuals. Unstructured management of patients with AF sharply contrasts with our detailed, although incomplete, knowledge of the mechanisms that cause AF and its complications. Altered calcium homeostasis, atrial fibrosis and ageing, ion-channel dysfunction, autonomic imbalance, fat-cell infiltration, and oxidative stress, in addition to a susceptible genetic background, contribute to the promotion, maintenance, and progression of AF. However, clinical management of patients with AF is currently guided by stroke risk parameters, AF pattern, and symptoms. In response to this apparent disconnect between the known pathophysiology of AF and clinical management, we propose a roadmap to develop a set of clinical markers that reflect the major causes of AF in patients. Thereby, the insights into the mechanisms causing AF will be transformed into a format that can underpin future personalized strategies to prevent and treat AF, ultimately informing better patient care

    Defining the major health modifiers causing atrial fibrillation: a roadmap to underpin personalized prevention and treatment

    No full text
    corecore