119 research outputs found

    Towards optimal use of phosphorus fertiliser

    Get PDF
    This is the final version. Available on open access from Nature Research via the DOI in this recordData availability: The dataset analysed during the current study is available from the corresponding author on reasonable request.Because phosphorus (P) is one of the most limiting nutrients in agricultural systems, P fertilisation is essential to feed the world. However, declining P reserves demand far more effective use of this crucial resource. Here, we use meta-analysis to synthesize yield responses to P fertilisation in grasslands, the most common type of agricultural land, to identify under which conditions P fertilisation is most effective. Yield responses to P fertilisation were 40–100% higher in (a) tropical vs temperate regions; (b) grass/legume mixtures vs grass monocultures; and (c) soil pH of 5–6 vs other pHs. The agronomic efficiency of P fertilisation decreased for greater P application rates. Moreover, soils with low P availability reacted disproportionately strong to fertilisation. Hence, low fertiliser application rates to P-deficient soils result in stronger absolute yield benefits than high rates applied to soils with a higher P status. Overall, our results suggest that optimising P fertiliser use is key to sustainable intensification of agricultural systems.De Heus b.v

    Observational Constraints on the Common Envelope Phase

    Full text link
    The common envelope phase was first proposed more than forty years ago to explain the origins of evolved, close binaries like cataclysmic variables. It is now believed that the phase plays a critical role in the formation of a wide variety of other phenomena ranging from type Ia supernovae through to binary black holes, while common envelope mergers are likely responsible for a range of enigmatic transients and supernova imposters. Yet, despite its clear importance, the common envelope phase is still rather poorly understood. Here, we outline some of the basic principles involved, the remaining questions as well as some of the recent observational hints from common envelope phenomena - namely planetary nebulae and luminous red novae - which may lead to answering these open questions.Comment: 29 pages, 8 figures. To appear in the book "Reviews in Frontiers of Modern Astrophysics: From Space Debris to Cosmology" (eds. Kabath, Jones and Skarka; publisher Springer Nature) funded by the European Union Erasmus+ Strategic Partnership grant "Per Aspera Ad Astra Simul" 2017-1-CZ01-KA203-03556

    Measurement and interpretation of same-sign W boson pair production in association with two jets in pp collisions at s = 13 TeV with the ATLAS detector

    Get PDF
    This paper presents the measurement of fducial and diferential cross sections for both the inclusive and electroweak production of a same-sign W-boson pair in association with two jets (W±W±jj) using 139 fb−1 of proton-proton collision data recorded at a centre-of-mass energy of √s = 13 TeV by the ATLAS detector at the Large Hadron Collider. The analysis is performed by selecting two same-charge leptons, electron or muon, and at least two jets with large invariant mass and a large rapidity diference. The measured fducial cross sections for electroweak and inclusive W±W±jj production are 2.92 ± 0.22 (stat.) ± 0.19 (syst.)fb and 3.38±0.22 (stat.)±0.19 (syst.)fb, respectively, in agreement with Standard Model predictions. The measurements are used to constrain anomalous quartic gauge couplings by extracting 95% confdence level intervals on dimension-8 operators. A search for doubly charged Higgs bosons H±± that are produced in vector-boson fusion processes and decay into a same-sign W boson pair is performed. The largest deviation from the Standard Model occurs for an H±± mass near 450 GeV, with a global signifcance of 2.5 standard deviations

    Combination of searches for heavy spin-1 resonances using 139 fb−1 of proton-proton collision data at s = 13 TeV with the ATLAS detector

    Get PDF
    A combination of searches for new heavy spin-1 resonances decaying into different pairings of W, Z, or Higgs bosons, as well as directly into leptons or quarks, is presented. The data sample used corresponds to 139 fb−1 of proton-proton collisions at = 13 TeV collected during 2015–2018 with the ATLAS detector at the CERN Large Hadron Collider. Analyses selecting quark pairs (qq, bb, , and tb) or third-generation leptons (τν and ττ) are included in this kind of combination for the first time. A simplified model predicting a spin-1 heavy vector-boson triplet is used. Cross-section limits are set at the 95% confidence level and are compared with predictions for the benchmark model. These limits are also expressed in terms of constraints on couplings of the heavy vector-boson triplet to quarks, leptons, and the Higgs boson. The complementarity of the various analyses increases the sensitivity to new physics, and the resulting constraints are stronger than those from any individual analysis considered. The data exclude a heavy vector-boson triplet with mass below 5.8 TeV in a weakly coupled scenario, below 4.4 TeV in a strongly coupled scenario, and up to 1.5 TeV in the case of production via vector-boson fusion

    Search for dark photons in rare Z boson decays with the ATLAS detector

    Get PDF
    A search for events with a dark photon produced in association with a dark Higgs boson via rare decays of the standard model Z boson is presented, using 139     fb − 1 of √ s = 13     TeV proton-proton collision data recorded by the ATLAS detector at the Large Hadron Collider. The dark boson decays into a pair of dark photons, and at least two of the three dark photons must each decay into a pair of electrons or muons, resulting in at least two same-flavor opposite-charge lepton pairs in the final state. The data are found to be consistent with the background prediction, and upper limits are set on the dark photon’s coupling to the dark Higgs boson times the kinetic mixing between the standard model photon and the dark photon, α D ϵ 2 , in the dark photon mass range of [5, 40] GeV except for the Υ mass window [8.8, 11.1] GeV. This search explores new parameter space not previously excluded by other experiments

    Combined measurement of the Higgs boson mass from the H → γγ and H → ZZ∗ → 4ℓ decay channels with the ATLAS detector using √s = 7, 8, and 13 TeV pp collision data

    Get PDF
    A measurement of the mass of the Higgs boson combining the H → Z Z ∗ → 4 ℓ and H → γ γ decay channels is presented. The result is based on 140     fb − 1 of proton-proton collision data collected by the ATLAS detector during LHC run 2 at a center-of-mass energy of 13 TeV combined with the run 1 ATLAS mass measurement, performed at center-of-mass energies of 7 and 8 TeV, yielding a Higgs boson mass of 125.11 ± 0.09 ( stat ) ± 0.06 ( syst ) = 125.11 ± 0.11     GeV . This corresponds to a 0.09% precision achieved on this fundamental parameter of the Standard Model of particle physics

    Transitioning from cerebrospinal fluid to blood tests to facilitate diagnosis and disease monitoring in Alzheimer's disease

    No full text
    Alzheimer's disease (AD) is increasingly prevalent worldwide, and disease-modifying treatments may soon be at hand; hence now, more than ever, there is a need to develop techniques that allow earlier and more secure diagnosis. Current biomarker-based guidelines for AD diagnosis, which have replaced the historical symptom-based guidelines, rely heavily on neuroimaging and cerebrospinal fluid (CSF) sampling. Whilst these have greatly improved the diagnostic accuracy of AD pathophysiology, they are less practical for application in primary care, population-based and epidemiological settings, or where resources are limited. In contrast, blood is a more accessible and cost-effective source of biomarkers in AD. In this review paper, using the recently proposed amyloid, tau and neurodegeneration [AT(N)] criteria as a framework towards a biological definition of AD, we discuss recent advances in biofluid-based biomarkers, with a particular emphasis on those with potential to be translated into blood-based biomarkers. We provide an overview of the research conducted both in CSF and in blood to draw conclusions on biomarkers that show promise. Given the evidence collated in this review, plasma neurofilament light chain (N), and phosphorylated tau (p-tau; T) show particular potential for translation into clinical practice. However, p-tau requires more comparisons to be conducted between its various epitopes before conclusions can be made as to which one most robustly differentiates AD from non-AD dementias. Plasma amyloid beta (A) would prove invaluable as an early screening modality, but it requires very precise tests and robust pre-analytical protocols
    corecore