108 research outputs found
Functional Vascular Tissue Engineering Inspired by Matricellular Proteins
Modern regenerative medicine, and tissue engineering specifically, has benefited from a greater appreciation of the native extracellular matrix (ECM). Fibronectin, collagen, and elastin have entered the tissue engineer's toolkit; however, as fully decellularized biomaterials have come to the forefront in vascular engineering it has become apparent that the ECM is comprised of more than just fibronectin, collagen, and elastin, and that cell-instructive molecules known as matricellular proteins are critical for desired outcomes. In brief, matricellular proteins are ECM constituents that contrast with the canonical structural proteins of the ECM in that their primary role is to interact with the cell. Of late, matricellular genes have been linked to diseases including connective tissue disorders, cardiovascular disease, and cancer. Despite the range of biological activities, this class of biomolecules has not been actively used in the field of regenerative medicine. The intent of this review is to bring matricellular proteins into wider use in the context of vascular tissue engineering. Matricellular proteins orchestrate the formation of new collagen and elastin fibers that have proper mechanical propertiesâthese will be essential components for a fully biological small diameter tissue engineered vascular graft (TEVG). Matricellular proteins also regulate the initiation of thrombosis via fibrin deposition and platelet activation, and the clearance of thrombus when it is no longer neededâproper regulation of thrombosis will be critical for maintaining patency of a TEVG after implantation. Matricellular proteins regulate the adhesion, migration, and proliferation of endothelial cellsâall are biological functions that will be critical for formation of a thrombus-resistant endothelium within a TEVG. Lastly, matricellular proteins regulate the adhesion, migration, proliferation, and activation of smooth muscle cellsâproper control of these biological activities will be critical for a TEVG that recellularizes and resists neointimal formation/stenosis. We review all of these functions for matricellular proteins here, in addition to reviewing the few studies that have been performed at the intersection of matricellular protein biology and vascular tissue engineering
Future Perspectives on the Role of Stem Cells and Extracellular Vesicles in Vascular Tissue Regeneration
Vascular tissue engineering is an area of regenerative medicine that attempts to create functional replacement tissue for defective segments of the vascular network. One approach to vascular tissue engineering utilizes seeding of biodegradable tubular scaffolds with stem (and/or progenitor) cells wherein the seeded cells initiate scaffold remodeling and prevent thrombosis through paracrine signaling to endogenous cells. Stem cells have received an abundance of attention in recent literature regarding the mechanism of their paracrine therapeutic effect. However, very little of this mechanistic research has been performed under the aegis of vascular tissue engineering. Therefore, the scope of this review includes the current state of TEVGs generated using the incorporation of stem cells in biodegradable scaffolds and potential cell-free directions for TEVGs based on stem cell secreted products. The current generation of stem cell-seeded vascular scaffolds are based on the premise that cells should be obtained from an autologous source. However, the reduced regenerative capacity of stem cells from certain patient groups limits the therapeutic potential of an autologous approach. This limitation prompts the need to investigate allogeneic stem cells or stem cell secreted products as therapeutic bases for TEVGs. The role of stem cell derived products, particularly extracellular vesicles (EVs), in vascular tissue engineering is exciting due to their potential use as a cell-free therapeutic base. EVs offer many benefits as a therapeutic base for functionalizing vascular scaffolds such as cell specific targeting, physiological delivery of cargo to target cells, reduced immunogenicity, and stability under physiological conditions. However, a number of points must be addressed prior to the effective translation of TEVG technologies that incorporate stem cell derived EVs such as standardizing stem cell culture conditions, EV isolation, scaffold functionalization with EVs, and establishing the therapeutic benefit of this combination treatment
A New Three-Dimensional Exponential Material Model of the Coronary Arterial Wall to Include Shear Stress Due to Torsion
The biomechanical milieu of the coronary arteries is unique in that they experience mechanical deformations of twisting, bending, and stretchin
Pittsburgh Center for Artificial Intelligence Innovation in Medical Imaging
We propose to create a medical imaging artificial intelligence (AI) center (name: Pittsburgh Center for Artificial Intelligence Innovation in Medical Imaging). AI is the new revolutionary technique for medical research and is reshaping tomorrowâs clinical practice in medical imaging (radiology and pathology). Our long-term vision is to build a center for innovative AI in clinical translational medical imaging by combining computational expertise and clinical resources across Pitt, UPMC, and CMU. The Center concept is a formalization of a group of researchers and clinicians that are united by the common theme: âbuilding advanced and trustworthy imaging AI for clinical applications.â Our short-term plan is to assemble dedicated members from the School of Medicine, the School of Engineering, and the School of Computing and Information. We seek a Scaling grant from the Momentum Funds to foster collaborative activities of the Center between these three Pitt schools to provide the essential components of a competitive P41 (Biomedical Technology Resource Centers) center grant in 2 years. The National Institute of Biomedical Imaging and Bioengineering (NIBIB) P41 mechanism aligns with the overall vision of this initiative to develop specific AI imaging tools and to support the dissemination and commercialization pathways that are essential to bringing AI imaging tools to clinical practice. These projects will include key components: 1) Clinical need-driven medical imaging AI development and evaluation of tools, models, systems, and informatics, 2) Core imaging AI theory, methodology, and algorithm investigation, and 3) Linking imaging phenotypes to the biological (genomics and proteomics) underpinnings. To date, we have already 35 members for the Center. The Pitt Momentum Funds will provide critical scaling support to promote communication between the three Pitt schools to develop a competitive P41 grant application and a sustainable framework to ensure the clinical impact of these AI imaging tools
Uropathic Observations in Mice Expressing a Constitutively Active Point Mutation in the 5-HT_(3A) Receptor Subunit
Mutant mice with a hypersensitive serotonin (5-HT)_(3A) receptor were generated through targeted exon replacement. A valine to serine mutation (V13âČS) in the channel-lining M2 domain of the 5-HT_(3A) receptor subunit rendered the 5-HTâ receptor âŒ70-fold more sensitive to serotonin and produced constitutive activity when combined with the 5-HT_(3B) subunit. Mice homozygous for the mutant allele (5-HT_(3A)^(vs/vs)) had decreased levels of 5-HT_(3A) mRNA. Measurements on sympathetic ganglion cells in these mice showed that whole-cell serotonin responses were reduced, and that the remaining 5-HTâ receptors were hypersensitive. Male 5-HT_(3A)^(vs/vs) mice died at 2-3 months of age, and heterozygous (5-HT_(3A)^(vs/+)) males and homozygous mutant females died at 4-6 months of age from an obstructive uropathy. Both male and female 5-HT_(3A) mutant mice had urinary bladder mucosal and smooth muscle hyperplasia and hypertrophy, whereas male mutant mice had additional prostatic smooth muscle and urethral hyperplasia. 5-HT_(3A) mutant mice had marked voiding dysfunction characterized by a loss of micturition contractions with overflow incontinence. Detrusor strips from 5-HT_(3A)^(vs/vs) mice failed to contract to neurogenic stimulation, despite overall normal responses to a cholinergic agonist, suggestive of altered neuronal signaling in mutant mouse bladders. Consistent with this hypothesis, decreased nerve fiber immunoreactivity was observed in the urinary bladders of 5-HT_(3A)^(vs/vs) compared with 5-HT_(3A) wild-type (5-HT_(3A)^(+/+)) mice. These data suggest that persistent activation of the hypersensitive and constitutively active 5-HT_(3A) receptor in vivo may lead to excitotoxic neuronal cell death and functional changes in the urinary bladder, resulting in bladder hyperdistension, urinary retention, and overflow incontinence
In Vivo assessment of a tissue-engineered vascular graft combining a biodegradable elastomeric scaffold and muscle-derived stem cells in a rat model
Limited autologous vascular graft availability and poor patency rates of synthetic grafts for bypass or replacement of small-diameter arteries remain a concern in the surgical community. These limitations could potentially be improved by a tissue engineering approach. We report here our progress in the development and in vivo testing of a stem-cell-based tissue-engineered vascular graft for arterial applications. Poly(ester urethane)urea scaffolds (length=10mm; inner diameter=1.2mm) were created by thermally induced phase separation (TIPS). Compound scaffolds were generated by reinforcing TIPS scaffolds with an outer electrospun layer of the same biomaterial (ES-TIPS). Both TIPS and ES-TIPS scaffolds were bulk-seeded with 10Ă106 allogeneic, LacZ-transfected, muscle-derived stem cells (MDSCs), and then placed in spinner flask culture for 48h. Constructs were implanted as interposition grafts in the abdominal aorta of rats for 8 weeks. Angiograms and histological assessment were performed at the time of explant. Cell-seeded constructs showed a higher patency rate than the unseeded controls: 65% (ES-TIPS) and 53% (TIPS) versus 10% (acellular TIPS). TIPS scaffolds had a 50% mechanical failure rate with aneurysmal formation, whereas no dilation was observed in the hybrid scaffolds. A smooth-muscle-like layer of cells was observed near the luminal surface of the constructs that stained positive for smooth muscle α-actin and calponin. LacZ+ cells were shown to be engrafted in the remodeled construct. A confluent layer of von Willebrand Factor-positive cells was observed in the lumen of MDSC-seeded constructs, whereas acellular controls showed platelet and fibrin deposition. This is the first evidence that MDSCs improve patency and contribute to the remodeling of a tissue-engineered vascular graft for arterial applications. © 2010 Mary Ann Liebert, Inc
Mechanism of aortic medial matrix remodeling is distinct in patients with bicuspid aortic valve
ObjectivesPatients with bicuspid aortic valves (BAV) are predisposed to developing ascending thoracic aortic aneurysms (TAA) at an earlier age than patients who develop degenerative TAAs and have a tricuspid aortic valve (TAV). The hypothesis tested is that BAV-associated aortopathy is mediated by a mechanism of matrix remodeling that is distinct from that seen in TAAs of patients with tricuspid aortic valves.MethodsAortic specimens were collected during ascending aortic replacement, aortic valve replacement, and heart transplants from nonaneurysmal (NA) donors and recipients. Matrix architecture of the aortic media was assessed qualitatively using multiphoton microscopy followed by quantification of collagen and elastin fiber orientation. α-Elastin was determined and matrix maturity was assessed by quantifying immature and mature collagen and lysyl oxidase (Lox) expression and activity in aortic specimens. Matrix metalloproteinase-2/9 activity was quantified in aortic smooth muscle cells.ResultsElastin and collagen fibers were more highly aligned in BAV-NA and BAV-TAA cases than in TAV-TAA cases, whereas TAV-TAA cases were more disorganized than TAV-NA cases. α-Elastin content was unchanged. Immature collagen was reduced in BAV-NA and BAV-TAA cases when compared with TAV-NA and TAV-TAA cases. Mature collagen was elevated in TAV-TAA cases compared with TAV-NA and BAV-TAA cases. There was a trend toward elevated Lox gene expression and activity and matrix metalloproteinase-2/9 activity for TAV-TAA, BAV-NA, and BAV-TAA specimens.ConclusionsThe highly aligned matrix architecture in patients with BAVs indicates that wall remodeling is distinct from TAV-TAA. Altered matrix architecture and reduced collagen maturity suggest that the effector molecules mediating the remodeling of TAAs are different in BAV and TAV cases
Patient-Specific Computational Modeling of Upper Extremity Arteriovenous Fistula Creation: Its Feasibility to Support Clinical Decision-Making
<div><h3>Introduction</h3><p>Inadequate flow enhancement on the one hand, and excessive flow enhancement on the other hand, remain frequent complications of arteriovenous fistula (AVF) creation, and hamper hemodialysis therapy in patients with end-stage renal disease. In an effort to reduce these, a patient-specific computational model, capable of predicting postoperative flow, has been developed. The purpose of this study was to determine the accuracy of the patient-specific model and to investigate its feasibility to support decision-making in AVF surgery.</p> <h3>Methods</h3><p>Patient-specific pulse wave propagation models were created for 25 patients awaiting AVF creation. Model input parameters were obtained from clinical measurements and literature. For every patient, a radiocephalic AVF, a brachiocephalic AVF, and a brachiobasilic AVF configuration were simulated and analyzed for their postoperative flow. The most distal configuration with a predicted flow between 400 and 1500 ml/min was considered the preferred location for AVF surgery. The suggestion of the model was compared to the choice of an experienced vascular surgeon. Furthermore, predicted flows were compared to measured postoperative flows.</p> <h3>Results</h3><p>Taken into account the confidence interval (25<sup>th</sup> and 75<sup>th</sup> percentile interval), overlap between predicted and measured postoperative flows was observed in 70% of the patients. Differentiation between upper and lower arm configuration was similar in 76% of the patients, whereas discrimination between two upper arm AVF configurations was more difficult. In 3 patients the surgeon created an upper arm AVF, while model based predictions allowed for lower arm AVF creation, thereby preserving proximal vessels. In one patient early thrombosis in a radiocephalic AVF was observed which might have been indicated by the low predicted postoperative flow.</p> <h3>Conclusions</h3><p>Postoperative flow can be predicted relatively accurately for multiple AVF configurations by using computational modeling. This model may therefore be considered a valuable additional tool in the preoperative work-up of patients awaiting AVF creation.</p> </div
- âŠ