938 research outputs found

    Q-phonon description of low lying 1^- two-phonon states in spherical nuclei

    Full text link
    The properties of 1^-_1 two-phonon states and the characteristics of E1 transition probabilities between low-lying collective states in spherical nuclei are analysed within the Q-phonon approach to the description of collective states. Several relations between observables are obtained. Microscopic calculations of the E1 0^+_1 -> 1^-_1 transition matrix elements are performed on the basis of the RPA. A satisfactory description of the experimental data is obtained.Comment: 16 pages, 2 figures, 9 table

    Reduction of quantum noise in optical interferometers using squeezed light

    Full text link
    We study the photon counting noise in optical interferometers used for gravitational wave detection. In order to reduce quantum noise a squeezed vacuum state is injected into the usually unused input port. Here, we specifically investigate the so called `dark port case', when the beam splitter is oriented close to 90{\deg} to the incoming laser beam, such that nearly all photons go to one output port of the interferometer, and only a small fraction of photons is seen in the other port (`dark port'). For this case it had been suggested that signal amplification is possible without concurrent noise amplification [R.Barak and Y.Ben-Aryeh, J.Opt.Soc.Am.B25(361)2008]. We show that by injection of a squeezed vacuum state into the second input port, counting noise is reduced for large values of the squeezing factor, however the signal is not amplified. Signal strength only depends on the intensity of the laser beam.Comment: 8 pages, 1 figur

    Higher Derivative Quantum Gravity with Gauss-Bonnet Term

    Full text link
    Higher derivative theory is one of the important models of quantum gravity, renormalizable and asymptotically free within the standard perturbative approach. We consider the 4ϵ4-\epsilon renormalization group for this theory, an approach which proved fruitful in 2ϵ2-\epsilon models. A consistent formulation in dimension n=4ϵn=4-\epsilon requires taking quantum effects of the topological term into account, hence we perform calculation which is more general than the ones done before. In the special n=4n=4 case we confirm a known result by Fradkin-Tseytlin and Avramidi-Barvinsky, while contributions from topological term do cancel. In the more general case of 4ϵ4-\epsilon renormalization group equations there is an extensive ambiguity related to gauge-fixing dependence. As a result, physical interpretation of these equations is not universal unlike we treat ϵ\epsilon as a small parameter. In the sector of essential couplings one can find a number of new fixed points, some of them have no analogs in the n=4n=4 case.Comment: LaTeX file, 30 pages, 5 figures. Several misprints in the intermediate expressions correcte

    Ground state correlations and structure of odd spherical nuclei

    Get PDF
    It is well known that the Pauli principle plays a substantial role at low energies because the phonon operators are not ideal boson operators. Calculating the exact commutators between the quasiparticle and phonon operators one can take into account the Pauli principle corrections. Besides the ground state correlations due to the quasiparticle interaction in the ground state influence the single particle fragmentation as well. In this paper, we generalize the basic QPM equations to account for both mentioned effects. As an illustration of our approach, calculations on the structure of the low-lying states in 131^{131}Ba have been performed.Comment: 12 pages, 1 figur

    Thermal and Physical Properties of Methane Family Hydrocarbon and Oxygen Combustion Products in State-of-the-Art Arc Steel Furnace

    Full text link
    The work deals with the particular combustion characteristics of methane family hydrocarbons (methane, ethane, propane, butane) and wet natural gas with process oxygen at carbon dioxide and water steam dissociation in a state-of-the-art arc steelmaking furnace. An algorithm is developed to calculate chemistry, the amount and concentration of combustion products at carbon dioxide and hydrogen dissociation, their physical and thermophysical parameters; heating power, balance and actual temperature, heat and pyrometric factors are evaluated considering heat transfer by radiation into unbounded medium. Based on the calculation results the recommendations are given for development of cold charge material heating conditions in order to minimize dusting, carbon oxide and hydrogen and charge material loss. © Published under licence by IOP Publishing Ltd

    Stable topological textures in a classical 2D Heisenberg model

    Full text link
    We show that stable localized topological soliton textures (skyrmions) with π2\pi_2 topological charge ν1\nu \geq 1 exist in a classical 2D Heisenberg model of a ferromagnet with uniaxial anisotropy. For this model the soliton exist only if the number of bound magnons exceeds some threshold value NcrN_{\rm cr} depending on ν\nu and the effective anisotropy constant KeffK_{\rm eff}. We define soliton phase diagram as the dependence of threshold energies and bound magnons number on anisotropy constant. The phase boundary lines are monotonous for both ν=1\nu=1 and ν>2\nu >2, while the solitons with ν=2\nu=2 reveal peculiar nonmonotonous behavior, determining the transition regime from low to high topological charges. In particular, the soliton energy per topological charge (topological energy density) achieves a minimum neither for ν=1\nu=1 nor high charges, but rather for intermediate values ν=2\nu=2 or ν=3\nu=3.Comment: 8 pages, 4 figure

    Coherent states of non-relativistic electron in magnetic-solenoid field

    Full text link
    We construct coherent states of a nonrelativistic electron in the magnetic-solenoid field, which is a superposition of the Aharonov-Bohm field and a collinear uniform magnetic field. In the problem under consideration there are two kind of coherent states, the first kind corresponds to classical trajectories which embrace the solenoid and the second one to trajectories which do not. Mean coordinates in the constructed coherent states are moving along classical trajectories, the coherent states maintain their form under the time evolution, and represent a complete set of functions, which can be useful in semi classical calculations. In the absence of the Aharonov-Bohm filed these states are reduced to the well-known in the case of uniform magnetic field Malkin-Man'ko coherent states.Comment: 11 pages, version accepted for publication in J. Phys. A, 3 figures adde

    On the chromatic numbers of 3-dimensional slices

    Full text link
    We prove that for an arbitrary ε>0\varepsilon > 0 holds χ(R3×[0,ε]6)10, \chi (\mathbb{R}^3 \times [0,\varepsilon]^6) \geq 10, where χ(M)\chi(M) stands for the chromatic number of an (infinite) graph with the vertex set MM and the edge set consists of pairs of monochromatic points at the distance 1 apart

    Separabelized Skyrme Interactions and Quasiparticle RPA

    Full text link
    A finite rank separable approximation for the quasiparticle RPA with Skyrme interactions is applied to study the low lying quadrupole and octupole states in some S isotopes and giant resonances in some spherical nuclei. It is shown that characteristics calculated within the suggested approach are in a good agreement with available experimental data.Comment: 12 pages, 2 figures, proceedings of the Seventh School-Seminar on Heavy Ion Physics, Dubna, Russia, May 27-June 1, 2002; to appear in Physics of Atomic Nucle
    corecore