1,163 research outputs found

    Cohomology of Conformal Algebras

    Full text link
    Conformal algebra is an axiomatic description of the operator product expansion of chiral fields in conformal field theory. On the other hand, it is an adequate tool for the study of infinite-dimensional Lie algebras satisfying the locality property. The main examples of such Lie algebras are those ``based'' on the punctured complex plane, like the Virasoro algebra and loop algebras. In the present paper we develop a cohomology theory of conformal algebras with coefficients in an arbitrary module. It possesses standard properties of cohomology theories; for example, it describes extensions and deformations. We offer explicit computations for most of the important examples.Comment: 46 pp., AMSLaTeX, uses epsfig, amssymb, amsc

    Q-phonon description of low lying 1^- two-phonon states in spherical nuclei

    Full text link
    The properties of 1^-_1 two-phonon states and the characteristics of E1 transition probabilities between low-lying collective states in spherical nuclei are analysed within the Q-phonon approach to the description of collective states. Several relations between observables are obtained. Microscopic calculations of the E1 0^+_1 -> 1^-_1 transition matrix elements are performed on the basis of the RPA. A satisfactory description of the experimental data is obtained.Comment: 16 pages, 2 figures, 9 table

    Reduction of quantum noise in optical interferometers using squeezed light

    Full text link
    We study the photon counting noise in optical interferometers used for gravitational wave detection. In order to reduce quantum noise a squeezed vacuum state is injected into the usually unused input port. Here, we specifically investigate the so called `dark port case', when the beam splitter is oriented close to 90{\deg} to the incoming laser beam, such that nearly all photons go to one output port of the interferometer, and only a small fraction of photons is seen in the other port (`dark port'). For this case it had been suggested that signal amplification is possible without concurrent noise amplification [R.Barak and Y.Ben-Aryeh, J.Opt.Soc.Am.B25(361)2008]. We show that by injection of a squeezed vacuum state into the second input port, counting noise is reduced for large values of the squeezing factor, however the signal is not amplified. Signal strength only depends on the intensity of the laser beam.Comment: 8 pages, 1 figur

    Digital twins in logistics

    Get PDF
    The logistics industry has undergone significant transformation over the years, thanks to advancements in technology. One of the most promising technologies disrupting the industry is digital twins. In this article, we explore the concept of digital twins in logistics, their benefits, and their potential impact on the industry

    Kinetic-inductance-limited reset time of superconducting nanowire photon counters

    Full text link
    We investigate the recovery of superconducting NbN-nanowire photon counters after detection of an optical pulse at a wavelength of 1550 nm, and present a model that quantitatively accounts for our observations. The reset time is found to be limited by the large kinetic inductance of these nanowires, which forces a tradeoff between counting rate and either detection efficiency or active area. Devices of usable size and high detection efficiency are found to have reset times orders of magnitude longer than their intrinsic photoresponse time.Comment: Submitted to Applied Physics Letter

    On the chromatic numbers of 3-dimensional slices

    Full text link
    We prove that for an arbitrary ε>0\varepsilon > 0 holds χ(R3×[0,ε]6)10, \chi (\mathbb{R}^3 \times [0,\varepsilon]^6) \geq 10, where χ(M)\chi(M) stands for the chromatic number of an (infinite) graph with the vertex set MM and the edge set consists of pairs of monochromatic points at the distance 1 apart

    Ground state correlations and structure of odd spherical nuclei

    Get PDF
    It is well known that the Pauli principle plays a substantial role at low energies because the phonon operators are not ideal boson operators. Calculating the exact commutators between the quasiparticle and phonon operators one can take into account the Pauli principle corrections. Besides the ground state correlations due to the quasiparticle interaction in the ground state influence the single particle fragmentation as well. In this paper, we generalize the basic QPM equations to account for both mentioned effects. As an illustration of our approach, calculations on the structure of the low-lying states in 131^{131}Ba have been performed.Comment: 12 pages, 1 figur

    Coherent states of non-relativistic electron in magnetic-solenoid field

    Full text link
    We construct coherent states of a nonrelativistic electron in the magnetic-solenoid field, which is a superposition of the Aharonov-Bohm field and a collinear uniform magnetic field. In the problem under consideration there are two kind of coherent states, the first kind corresponds to classical trajectories which embrace the solenoid and the second one to trajectories which do not. Mean coordinates in the constructed coherent states are moving along classical trajectories, the coherent states maintain their form under the time evolution, and represent a complete set of functions, which can be useful in semi classical calculations. In the absence of the Aharonov-Bohm filed these states are reduced to the well-known in the case of uniform magnetic field Malkin-Man'ko coherent states.Comment: 11 pages, version accepted for publication in J. Phys. A, 3 figures adde
    corecore