2 research outputs found

    Improvement of Refrigerating Machine Energy Efficiency Through Radiative Removal of Condensation Heat

    Full text link
    In regions with a continental climate, refrigerators with air-cooled condensers operate at high condensation pressures during the summer season which reduces their efficiency and accelerates the wear of compressors. To reduce condensation pressure, it was proposed to use radiative cooling which is a way of heat removal through the planet's atmosphere to outer space in a form of infrared radiation. A refrigerating machine with an assembly of condensation heat removal including air and liquid cooling condensers connected in series has been developed. To reduce the condensation temperature, a pre-cooled heat-transfer agent is fed to the liquid cooling condenser during the day hours at high atmospheric temperatures. At night, the heat-transfer agent is cooled by radiative cooling. An experimental study of the operation of a 600 W refrigerating machine including a sealed piston compressor was conducted. R134a refrigerant was used. Supply of pre-cooled heat-transfer agent at +33.1 °С has provided a reduction of condensation temperature from +47.0 to +39.1 °С. The study was conducted at an atmospheric air temperature of +38.0 °С. The degree of pressure growth was decreased by 30 %. The refrigeration coefficient was increased by 11 %. In comparison with the conventional scheme with an air-cooled condenser, energy consumption by the system did not change in the daytime. The offered scheme of condensation heat removal reduces the pressure of condensation and provides stability for refrigerating machine operation. It can be used in stationary refrigerating machines at high daytime temperatures
    corecore