253 research outputs found
Phosphofructo-1-Kinase Deficiency Leads to a Severe Cardiac and Hematological Disorder in Addition to Skeletal Muscle Glycogenosis
Mutations in the gene for muscle phosphofructo-1-kinase (PFKM), a key regulatory enzyme of glycolysis, cause Type VII glycogen storage disease (GSDVII). Clinical manifestations of the disease span from the severe infantile form, leading to death during childhood, to the classical form, which presents mainly with exercise intolerance. PFKM deficiency is considered as a skeletal muscle glycogenosis, but the relative contribution of altered glucose metabolism in other tissues to the pathogenesis of the disease is not fully understood. To elucidate this issue, we have generated mice deficient for PFKM (Pfkm−/−). Here, we show that Pfkm−/− mice had high lethality around weaning and reduced lifespan, because of the metabolic alterations. In skeletal muscle, including respiratory muscles, the lack of PFK activity blocked glycolysis and resulted in considerable glycogen storage and low ATP content. Although erythrocytes of Pfkm−/− mice preserved 50% of PFK activity, they showed strong reduction of 2,3-biphosphoglycerate concentrations and hemolysis, which was associated with compensatory reticulocytosis and splenomegaly. As a consequence of these haematological alterations, and of reduced PFK activity in the heart, Pfkm−/− mice developed cardiac hypertrophy with age. Taken together, these alterations resulted in muscle hypoxia and hypervascularization, impaired oxidative metabolism, fiber necrosis, and exercise intolerance. These results indicate that, in GSDVII, marked alterations in muscle bioenergetics and erythrocyte metabolism interact to produce a complex systemic disorder. Therefore, GSDVII is not simply a muscle glycogenosis, and Pfkm−/− mice constitute a unique model of GSDVII which may be useful for the design and assessment of new therapies
Kinome rewiring reveals AURKA limits PI3K-pathway inhibitor efficacy in breast cancer.
Dysregulation of the PI3K-AKT-mTOR signaling network is a prominent feature of breast cancers. However, clinical responses to drugs targeting this pathway have been modest, possibly because of dynamic changes in cellular signaling that drive resistance and limit drug efficacy. Using a quantitative chemoproteomics approach, we mapped kinome dynamics in response to inhibitors of this pathway and identified signaling changes that correlate with drug sensitivity. Maintenance of AURKA after drug treatment was associated with resistance in breast cancer models. Incomplete inhibition of AURKA was a common source of therapy failure, and combinations of PI3K, AKT or mTOR inhibitors with the AURKA inhibitor MLN8237 were highly synergistic and durably suppressed mTOR signaling, resulting in apoptosis and tumor regression in vivo. This signaling map identifies survival factors whose presence limits the efficacy of targeted therapies and reveals new drug combinations that may unlock the full potential of PI3K-AKT-mTOR pathway inhibitors in breast cancer
Childhood leukaemia: long-term excess mortality and the proportion ‘cured'
Survival from childhood leukaemia has increased, but the proportion of children cured is unknown. The proportion ‘cured' is defined as the proportion of survivors for whom, as a group, there is no longer excess mortality compared to the general population. Average time to cure is defined as the time since diagnosis at which the excess mortality rate has declined to or below a predetermined small value. Data on children diagnosed with leukaemia during 1971–2000 in Great Britain were used to estimate trends in survival, the proportion cured and the average time to cure. Five-year survival for all types of leukaemia combined rose from 33 to 79% by 2000. The percentage cured rose from 25 to 68% by 1995; it is predicted to increase to 73% for those diagnosed more recently. Average time to cure increased from 12 years (95% confidence interval (CI): 11–14) to 19 years (95% CI: 14–26) for lymphoid leukaemia (average annual increase of 0.3 years; P<0.001), but remained at about 5 years for acute nonlymphoblastic leukaemia. The proportion of children cured of leukaemia has risen dramatically, but the period of excess mortality associated with lymphoid leukaemia has also increased, possibly because of late relapse, secondary malignancy and toxicity from treatment
Respiratory epithelial cells require Toll-like receptor 4 for induction of Human β-defensin 2 by Lipopolysaccharide
BACKGROUND: The respiratory epithelium is a major portal of entry for pathogens and employs innate defense mechanisms to prevent colonization and infection. Induced expression of human β-defensin 2 (HBD2) represents a direct response by the epithelium to potential infection. Here we provide evidence for the critical role of Toll-like receptor 4 (TLR4) in lipopolysaccharide (LPS)-induced HBD2 expression by human A549 epithelial cells. METHODS: Using RTPCR, fluorescence microscopy, ELISA and luciferase reporter gene assays we quantified interleukin-8, TLR4 and HBD2 expression in unstimulated or agonist-treated A549 and/or HEK293 cells. We also assessed the effect of over expressing wild type and/or mutant TLR4, MyD88 and/or Mal transgenes on LPS-induced HBD2 expression in these cells. RESULTS: We demonstrate that A549 cells express TLR4 on their surface and respond directly to Pseudomonas LPS with increased HBD2 gene and protein expression. These effects are blocked by a TLR4 neutralizing antibody or functionally inactive TLR4, MyD88 and/or Mal transgenes. We further implicate TLR4 in LPS-induced HBD2 production by demonstrating HBD2 expression in LPS non-responsive HEK293 cells transfected with a TLR4 expression plasmid. CONCLUSION: This data defines an additional role for TLR4 in the host defense in the lung
CAR T cells with dual targeting of CD19 and CD22 in pediatric and young adult patients with relapsed or refractory B cell acute lymphoblastic leukemia: a phase 1 trial
Chimeric antigen receptor (CAR) T cells targeting CD19 or CD22 have shown remarkable activity in B cell acute lymphoblastic leukemia (B-ALL). The major cause of treatment failure is antigen downregulation or loss. Dual antigen targeting could potentially prevent this, but the clinical safety and efficacy of CAR T cells targeting both CD19 and CD22 remain unclear. We conducted a phase 1 trial in pediatric and young adult patients with relapsed or refractory B-ALL (n = 15) to test AUTO3, autologous transduced T cells expressing both anti-CD19 and anti-CD22 CARs (AMELIA trial, EUDRA CT 2016-004680-39). The primary endpoints were the incidence of grade 3-5 toxicity in the dose-limiting toxicity period and the frequency of dose-limiting toxicities. Secondary endpoints included the rate of morphological remission (complete response or complete response with incomplete bone marrow recovery) with minimal residual disease-negative response, as well as the frequency and severity of adverse events, expansion and persistence of AUTO3, duration of B cell aplasia, and overall and event-free survival. The study endpoints were met. AUTO3 showed a favorable safety profile, with no dose-limiting toxicities or cases of AUTO3-related severe cytokine release syndrome or neurotoxicity reported. At 1 month after treatment the remission rate (that is, complete response or complete response with incomplete bone marrow recovery) was 86% (13 of 15 patients). The 1 year overall and event-free survival rates were 60% and 32%, respectively. Relapses were probably due to limited long-term AUTO3 persistence. Strategies to improve CAR T cell persistence are needed to fully realize the potential of dual targeting CAR T cell therapy in B-ALL
Cytokeratin 8/18 expression indicates a poor prognosis in squamous cell carcinomas of the oral cavity
BACKGROUND: Intermediary filaments are involved in cell motility and cancer progression. In a variety of organs, the expression of distinct intermediary filaments are associated with patient prognosis. In this study, we seeked to define the prognostic potential of cytokeratin and vimentin expression patterns in squamous cell carcinomas (SCC's) of the oral cavity. METHODS: 308 patients with histologically proven and surgically treated squamous cell carcinomas of the oral cavity were investigated for the immunohistochemical expression of a variety of intermediary filaments including high- and low-molecular weight cytokeratins (Ck's), such as Ck 5/6, Ck 8/18, Ck 1, CK 10, Ck 14, Ck 19 and vimentin, using the tissue microarray technique. Correlations between clinical features and the expression of Cytokeratins and vimentin were evaluated statistically by Kaplan-Meier curves and multivariate Cox regression analysis. RESULTS: The expression of Ck 8/18 and Ck 19 were overall significantly correlated with a poor clinical prognosis (Ck 8/18 p = 0.04; Ck19 p < 0.01). These findings could also be reproduced for Ck 8/18 in primary nodal-negative SCC's and held true in multivariate-analysis. No significant correlation with patient prognosis could be found for the expression of the other cytokeratins and for vimentin. CONCLUSION: The expression of Ck 8/18 in SCC's of the oral cavity is an independent prognostic marker and indicates a decreased overall and progression free survival. These results provide an extended knowledge about the role of intermediary filament expression patterns in SCC's
Transepithelial Transport and Enzymatic Detoxification of Gluten in Gluten-Sensitive Rhesus Macaques
In a previous report, we characterized a condition of gluten sensitivity in juvenile rhesus macaques that is similar in many respects to the human condition of gluten sensitivity, celiac disease. This animal model of gluten sensitivity may therefore be useful toward studying both the pathogenesis and the treatment of celiac disease. Here, we perform two pilot experiments to demonstrate the potential utility of this model for studying intestinal permeability toward an immunotoxic gluten peptide and pharmacological detoxification of gluten in vivo by an oral enzyme drug candidate.Intestinal permeability was investigated in age-matched gluten-sensitive and control macaques by using mass spectrometry to detect and quantify an orally dosed, isotope labeled 33-mer gluten peptide delivered across the intestinal epithelium to the plasma. The protective effect of a therapeutically promising oral protease, EP-B2, was evaluated in a gluten-sensitive macaque by administering a daily gluten challenge with or without EP-B2 supplementation. ELISA-based antibody assays and blinded clinical evaluations of this macaque and of an age-matched control were conducted to assess responses to gluten.Labeled 33-mer peptide was detected in the plasma of a gluten-sensitive macaque, both in remission and during active disease, but not in the plasma of healthy controls. Administration of EP-B2, but not vehicle, prevented clinical relapse in response to a dietary gluten challenge. Unexpectedly, a marked increase in anti-gliadin (IgG and IgA) and anti-transglutaminase (IgG) antibodies was observed during the EP-B2 treatment phase.Gluten-sensitive rhesus macaques may be an attractive resource for investigating important aspects of celiac disease, including enhanced intestinal permeability and pharmacology of oral enzyme drug candidates. Orally dosed EP-B2 exerts a protective effect against ingested gluten. Limited data suggest that enhanced permeability of short gluten peptides generated by gastrically active glutenases may trigger an elevated antibody response, but that these antibodies are not necessarily causative of clinical illness
Sighting acute myocardial infarction through platelet gene expression
© 2019, The Author(s). Acute myocardial infarction is primarily due to coronary atherosclerotic plaque rupture and subsequent thrombus formation. Platelets play a key role in the genesis and progression of both atherosclerosis and thrombosis. Since platelets are anuclear cells that inherit their mRNA from megakaryocyte precursors and maintain it unchanged during their life span, gene expression profiling at the time of an acute myocardial infarction provides information concerning the platelet gene expression preceding the coronary event. In ST-segment elevation myocardial infarction (STEMI), a gene-by-gene analysis of the platelet gene expression identified five differentially expressed genes: FKBP5, S100P, SAMSN1, CLEC4E and S100A12. The logistic regression model used to combine the gene expression in a STEMI vs healthy donors score showed an AUC of 0.95. The same five differentially expressed genes were externally validated using platelet gene expression data from patients with coronary atherosclerosis but without thrombosis. Platelet gene expression profile highlights five genes able to identify STEMI patients and to discriminate them in the background of atherosclerosis. Consequently, early signals of an imminent acute myocardial infarction are likely to be found by platelet gene expression profiling before the infarction occurs
- …