34 research outputs found

    Sparse Bayesian Learning with Diagonal Quasi-Newton Method for Large Scale Classification

    Full text link
    Sparse Bayesian Learning (SBL) constructs an extremely sparse probabilistic model with very competitive generalization. However, SBL needs to invert a big covariance matrix with complexity O(M^3 ) (M: feature size) for updating the regularization priors, making it difficult for practical use. There are three issues in SBL: 1) Inverting the covariance matrix may obtain singular solutions in some cases, which hinders SBL from convergence; 2) Poor scalability to problems with high dimensional feature space or large data size; 3) SBL easily suffers from memory overflow for large-scale data. This paper addresses these issues with a newly proposed diagonal Quasi-Newton (DQN) method for SBL called DQN-SBL where the inversion of big covariance matrix is ignored so that the complexity and memory storage are reduced to O(M). The DQN-SBL is thoroughly evaluated on non-linear classifiers and linear feature selection using various benchmark datasets of different sizes. Experimental results verify that DQN-SBL receives competitive generalization with a very sparse model and scales well to large-scale problems.Comment: 11 pages,5 figure

    Graph based Label Enhancement for Multi-instance Multi-label learning

    Full text link
    Multi-instance multi-label (MIML) learning is widely applicated in numerous domains, such as the image classification where one image contains multiple instances correlated with multiple logic labels simultaneously. The related labels in existing MIML are all assumed as logical labels with equal significance. However, in practical applications in MIML, significance of each label for multiple instances per bag (such as an image) is significant different. Ignoring labeling significance will greatly lose the semantic information of the object, so that MIML is not applicable in complex scenes with a poor learning performance. To this end, this paper proposed a novel MIML framework based on graph label enhancement, namely GLEMIML, to improve the classification performance of MIML by leveraging label significance. GLEMIML first recognizes the correlations among instances by establishing the graph and then migrates the implicit information mined from the feature space to the label space via nonlinear mapping, thus recovering the label significance. Finally, GLEMIML is trained on the enhanced data through matching and interaction mechanisms. GLEMIML (AvgRank: 1.44) can effectively improve the performance of MIML by mining the label distribution mechanism and show better results than the SOTA method (AvgRank: 2.92) on multiple benchmark datasets.Comment: 7 pages,2 figure

    Model Predictive Engine Air-Ratio Control Using Online Sequential Relevance Vector Machine

    Get PDF
    Engine power, brake-specific fuel consumption, and emissions relate closely to air ratio (i.e., lambda) among all the engine variables. An accurate and adaptive model for lambda prediction is essential to effective lambda control for long term. This paper utilizes an emerging technique, relevance vector machine (RVM), to build a reliable time-dependent lambda model which can be continually updated whenever a sample is added to, or removed from, the estimated lambda model. The paper also presents a new model predictive control (MPC) algorithm for air-ratio regulation based on RVM. This study shows that the accuracy, training, and updating time of the RVM model are superior to the latest modelling methods, such as diagonal recurrent neural network (DRNN) and decremental least-squares support vector machine (DLSSVM). Moreover, the control algorithm has been implemented on a real car to test. Experimental results reveal that the control performance of the proposed relevance vector machine model predictive controller (RVMMPC) is also superior to DRNNMPC, support vector machine-based MPC, and conventional proportional-integral (PI) controller in production cars. Therefore, the proposed RVMMPC is a promising scheme to replace conventional PI controller for engine air-ratio control

    Simultaneous-Fault Diagnosis of Automotive Engine Ignition Systems Using Prior Domain Knowledge and Relevance Vector Machine

    Get PDF
    Engine ignition patterns can be analyzed to identify the engine fault according to both the specific prior domain knowledge and the shape features of the patterns. One of the challenges in ignition system diagnosis is that more than one fault may appear at a time. This kind of problem refers to simultaneous-fault diagnosis. Another challenge is the acquisition of a large amount of costly simultaneous-fault ignition patterns for constructing the diagnostic system because the number of the training patterns depends on the combination of different single faults. The above problems could be resolved by the proposed framework combining feature extraction, probabilistic classification, and decision threshold optimization. With the proposed framework, the features of the single faults in a simultaneous-fault pattern are extracted and then detected using a new probabilistic classifier, namely, pairwise coupling relevance vector machine, which is trained with single-fault patterns only. Therefore, the training dataset of simultaneous-fault patterns is not necessary. Experimental results show that the proposed framework performs well for both single-fault and simultaneous-fault diagnoses and is superior to the existing approach

    Adaptive Control Using Fully Online Sequential-Extreme Learning Machine and a Case Study on Engine Air-Fuel Ratio Regulation

    Get PDF
    Most adaptive neural control schemes are based on stochastic gradient-descent backpropagation (SGBP), which suffers from local minima problem. Although the recently proposed regularized online sequential-extreme learning machine (ReOS-ELM) can overcome this issue, it requires a batch of representative initial training data to construct a base model before online learning. The initial data is usually difficult to collect in adaptive control applications. Therefore, this paper proposes an improved version of ReOS-ELM, entitled fully online sequential-extreme learning machine (FOS-ELM). While retaining the advantages of ReOS-ELM, FOS-ELM discards the initial training phase, and hence becomes suitable for adaptive control applications. To demonstrate its effectiveness, FOS-ELM was applied to the adaptive control of engine air-fuel ratio based on a simulated engine model. Besides, controller parameters were also analyzed, in which it is found that large hidden node number with small regularization parameter leads to the best performance. A comparison among FOS-ELM and SGBP was also conducted. The result indicates that FOS-ELM achieves better tracking and convergence performance than SGBP, since FOS-ELM tends to learn the unknown engine model globally whereas SGBP tends to “forget” what it has learnt. This implies that FOS-ELM is more preferable for adaptive control applications

    Simultaneous-Fault Diagnosis of Gas Turbine Generator Systems Using a Pairwise-Coupled Probabilistic Classifier

    Get PDF
    A reliable fault diagnostic system for gas turbine generator system (GTGS), which is complicated and inherent with many types of component faults, is essential to avoid the interruption of electricity supply. However, the GTGS diagnosis faces challenges in terms of the existence of simultaneous-fault diagnosis and high cost in acquiring the exponentially increased simultaneous-fault vibration signals for constructing the diagnostic system. This research proposes a new diagnostic framework combining feature extraction, pairwise-coupled probabilistic classifier, and decision threshold optimization. The feature extraction module adopts wavelet packet transform and time-domain statistical features to extract vibration signal features. Kernel principal component analysis is then applied to further reduce the redundant features. The features of single faults in a simultaneous-fault pattern are extracted and then detected using a probabilistic classifier, namely, pairwise-coupled relevance vector machine, which is trained with single-fault patterns only. Therefore, the training dataset of simultaneous-fault patterns is unnecessary. To optimize the decision threshold, this research proposes to use grid search method which can ensure a global solution as compared with traditional computational intelligence techniques. Experimental results show that the proposed framework performs well for both single-fault and simultaneous-fault diagnosis and is superior to the frameworks without feature extraction and pairwise coupling

    Proceedings of elm 2018

    No full text

    An Inverse-Free and Scalable Sparse Bayesian Extreme Learning Machine for Classification Problems

    No full text
    Sparse Bayesian Extreme Learning Machine (SBELM) constructs an extremely sparse and probabilistic model with low computational cost and high generalization. However, the update rule of hyperparameters (ARD prior) in SBELM involves using the diagonal elements from the inversion of the covariance matrix with the full training dataset, which raises the following two issues. Firstly, inverting the Hessian matrix may suffer ill-conditioning issues in some cases, which hinders SBELM from converging. Secondly, it may result in the memory-overflow issue with computational memory O(L3)O(L^{3}) ( LL : number of hidden nodes) to invert the big covariance matrix for updating the ARD priors. To address these issues, an inverse-free SBELM called QN-SBELM is proposed in this paper, which integrates the gradient-based Quasi-Newton (QN) method into SBELM to approximate the inverse covariance matrix. It takes O(L2)O(L^{2}) computational complexity and is simultaneously scalable to large problems. QN-SBELM was evaluated on benchmark datasets of different sizes. Experimental results verify that QN-SBELM achieves more accurate results than SBELM with a sparser model, and also provides more stable solutions and a great extension to large-scale problems

    Variation-Oriented Data Filtering for Improvement in Model Complexity of Air Pollutant Prediction Model

    No full text
    Accurate prediction models for air pollutants are crucial for forecast and health alarm to local inhabitants. In recent literature, discrete wavelet transform (DWT) was employed to decompose a series of air pollutant levels, followed by modeling using support vector machine (SVM). This combination of DWT and SVM was reported to produce a more accurate prediction model for air pollutants by investigating different levels of frequency bands. However, DWT has a significant demand in model complexity, namely, the training time and the model size of the prediction model. In this paper, a new method called variation-oriented filtering (VF) is proposed to remove the data with low variation, which can be considered as noise to a prediction model. By VF, the noise and the size of the series of air pollutant levels can be reduced simultaneously and hence so are the training time and model size. The SO2 (sulfur dioxide) level in Macau was selected as a test case. Experimental results show that VF can effectively and efficiently reduce the model complexity with improvement in predictive accuracy
    corecore