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Most adaptive neural control schemes are based on stochastic gradient-descent backpropagation (SGBP), which suffers from
local minima problem. Although the recently proposed regularized online sequential-extreme learning machine (ReOS-ELM) can
overcome this issue, it requires a batch of representative initial training data to construct a base model before online learning. The
initial data is usually difficult to collect in adaptive control applications. Therefore, this paper proposes an improved version of
ReOS-ELM, entitled fully online sequential-extreme learning machine (FOS-ELM).While retaining the advantages of ReOS-ELM,
FOS-ELM discards the initial training phase, and hence becomes suitable for adaptive control applications. To demonstrate its
effectiveness, FOS-ELM was applied to the adaptive control of engine air-fuel ratio based on a simulated engine model. Besides,
controller parameters were also analyzed, in which it is found that large hidden node number with small regularization parameter
leads to the best performance. A comparison among FOS-ELM and SGBP was also conducted. The result indicates that FOS-ELM
achieves better tracking and convergence performance than SGBP, since FOS-ELM tends to learn the unknown engine model
globally whereas SGBP tends to “forget” what it has learnt. This implies that FOS-ELM is more preferable for adaptive control
applications.

1. Introduction

Adaptive control is a powerful control scheme for dynamic
system with high uncertainty. Its principle is to, based on the
output feedback of the system, self-adjust the characteristics
of the controller online in a way that the tracking error
is reduced while stability is maintained. One remarkable
development in adaptive control is the application of neural
networks to the adaptive mechanism [1–3], which is often
referred to as adaptive neural control. It is well known that
neural networks can approximate any nonlinear relationship
by means of different network parameters and activation
functions.Therefore, by expressing the system uncertainty in
terms of neural networks, an adaptive neural controller is able
to handle arbitrary nonlinearities through the tuning of its
unknown network parameters. With this attractive feature,
adaptive neural control has been extensively used in many
controller design problems and practical applications [4–8].

Nevertheless, in most typical neural controllers, the
parameter adjustment method, or so-called the adaptive law,
is based on the backpropagation (BP) algorithm [9]. The
critical drawback of this algorithm is that it is a gradient-
decent based learning method which may easily converge
to local minima [10, 11]. Therefore, it usually takes “more
than required” steps for the controller to achieve satisfactory
performance. For instance, the simulation results in an earlier
work of adaptive neural control [1] showed that thousands
of updating steps were needed before the controller could
finally achieve the desired convergence. Moreover, in some
recent studies such as [5, 6] the neural controllers were shown
to perform better than traditional proportional-integral-
derivative controllers. However, the controllers still take
many time steps to settle every time when the desired output
is changed. These results indicate that the system dynamics
cannot be globally approximated. Another disadvantageous
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property of BP is that it updates the parameters in all the
layers of the neural network, leading to a long processing time
and hence a slow convergence speed.

In order to address the issues of BP, Huang et al. [12,
13] proposed a simple and fast algorithm entitled extreme
learning machine (ELM). This algorithm trains only a single
hidden layer feedforward neural network. Unlike BP where
all the parameters need to be tuned, ELM learns the unknown
nonlinear relation by updating only the output weights
(parameters between the hidden layer and the output layer
of the neural network); the parameters in the hidden layer
are randomly initialized and remain unchanged. Due to its
simple structure and learning mechanism, ELM runs much
faster (up to thousands of times [11–13]) than traditional
BP. Meanwhile, ELM is also superior to BP in terms of
generalization performance and accuracy, which has been
verified in many latest works [11, 14–18]. In this sense,
employing ELM into adaptive neural control should lead to
a better control performance. Yet the original ELM algorithm
is only suitable for batch learning. To learn the model online,
online sequential ELM (OS-ELM) was proposed in [19].
While achieving the same performance as batch ELM, OS-
ELM could update the network parameters sequentially no
matterwhether the data comes one by one or chunk by chunk.
Therefore, by replacing BP with OS-ELM, a better and faster
adaptive neural controller should be obtained.

However, there are some factors limiting the direct
application of OS-ELM to adaptive control. Firstly, OS-ELM
is not robust for noisy data. Secondly, the initial parameters
of OS-ELM, which are randomly generated, can easily lead
to singular and ill-posed problems [20]. These problems
significantly affect the model, so that the generalization
performance could degrade to an unacceptable level. Fur-
thermore, theoretically speaking, OS-ELM is not a fully
online sequential learning algorithm; it requires a chunk
of representative initial data to train a base ELM model in
advance to the online sequential learning. This chunk of
representative initial data is usually difficult to obtain for
adaptive control problems. The number of the initial data
could not be less than the number of hidden nodes either. All
these together highly restrict the use of OS-ELM.

In order to deal with the aforesaid problems, regular-
ized OS-ELM (ReOS-ELM), which was proposed by Huynh
and Won [20], could be used. In ReOS-ELM, the norm
of output weights is added to the objective function to
avoid singular and ill-posed problems. At the same time, a
regularization parameter is included for the trade-off between
the optimization of output weight norm and the training
error. With the introduction of the regularization parameter,
the number of training data could also be less than the
number of hidden nodes. A base model, however, is still
required in ReOS-ELM. To overcome this limitation, this
paper proposes a fully online version of ELM, entitled fully
online sequential-extreme learning machine (FOS-ELM).
This proposed FOS-ELM is derived from ReOS-ELM, so
it retains all the advantages and properties of ReOS-ELM,
with the only difference that the batch training phase is
discarded. Due to the removal of batch training phase,
FOS-ELM can easily be applied to any adaptive control

problems. For demonstration purpose, this paper presents
the application of FOS-ELM to the adaptive engine air-fuel
ratio (AFR) control based on a simulated engine model. The
influence of the parameters (regularization parameter and
hidden node number) is analyzed in the simulation. To verify
the effectiveness of FOS-ELM, stochastic gradient-descent BP
(SGBP), as a sequential learning variant of BP, is also applied
to the same adaptive AFR control problem for comparison.

The organization of this paper is as follows. A brief review
of ELM and its variants is provided in Section 2. The details
of the proposed FOS-ELM are presented in Section 3. The
application of FOS-ELM to adaptive engine AFR control
and the related discussions are given in Section 4. Finally,
conclusions are drawn in Section 5.

2. Review of ELM and Its Variants

This section briefly reviews the related work of ELM, includ-
ing basic ELM, regularized ELM (ReELM), OS-ELM, and
ReOS-ELM, in order to provide necessary background.

2.1. ELM and Regularized ELM. ELM [13] is an emerging
technique for training feedforward neural networks without
iterations. It consists of only one hidden layer, in which
the input weights are randomly generated and need not be
tuned. The output weights are optimized using a Moore-
Penrose pseudoinverse instead of gradient-decent method.
Apart from the number of hidden nodes, no other parameters
have to be manually chosen [13, 19]. For a network with one
hidden layer and 𝐿 hidden nodes, the output function is

𝑓 (x) =
𝐿

∑

𝑖=1

𝛽
𝑖
ℎ
𝑖 (x) = h (x)𝛽, (1)

where h(x) = [ℎ
1
(x), ℎ
2
(x), . . . , ℎ

𝐿
(x)] is the output vector of

the hidden layer feature mapping with respect to the input
x and 𝛽 = [𝛽

1
, 𝛽
2
, . . . , 𝛽

𝐿
]
𝑇 is the vector of output weights

between the hidden layer and the output nodes.
For a training dataset 𝑆 with 𝑁 samples, matrix H =

[h(x
1
), h(x
2
), . . . , h(x

𝑁
)]
𝑇 can be used to present the hidden

layer output. The size of H is 𝑁 × 𝐿 and each row of H is a
training sample after feature mapping.

The goal of basic ELM is to minimize the training error;
that is,

Minimize: ‖H𝛽 − T‖2, (2)

where T is the vector of real target 𝑡
𝑖
with respect to a

sample 𝑥
𝑖
from 𝑆. Mathematically, it is a multiple linear

regression problem. The solution of 𝛽 to (2) is

𝛽 = H†T, (3)

where H† is the Moore-Penrose generalized inverse of
matrix H. If H𝑇H is nonsingular, the orthogonal projection
method can be used to calculate the pseudoinverse of H

H† = (H𝑇H)
−1

H𝑇. (4)
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Thus, 𝛽 can be rewritten as

𝛽 = (H𝑇H)
−1

H𝑇T. (5)

Since basic ELM is based on empirical risk minimization
principle (please refer to (2)), the trained model tends to be
overfitting [20, 21]. Therefore, ReELM was proposed in [21]
as an improved version of ELM. A similar work has also been
introduced by the authors of ELM in [22], and amore detailed
explanation can be found in [23].The optimal goal of ReELM
is to minimize not only the training error, but also the norm
of the output weights; that is,

H𝛽 − T
2
,

𝛽


2
. (6)

The optimization problem of ReELM for a single-output
node can then be formulated as follows:

Minimize: 1
2
𝜆
𝛽



2
+
1

2

𝑁

∑
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𝜉
2

𝑖
,

Subject to: ℎ (x
𝑖
)𝛽 = 𝑡

𝑖
− 𝜉
𝑖
, 𝑖 = 1, . . . , 𝑁,

(7)

where 𝜆 is the user-specified parameter that provides a trade-
off between the training error and the norm of the output
weights, 𝑁 is the number of training data, and 𝜉

𝑖
is the error

for 𝑖th training data (also known as slack variable). The
solution of 𝛽 can be calculated by

𝛽 = (H𝑇H + 𝜆I)
−1

H𝑇T. (8)

According to Bartlett’s theory [24], this resulting solution
tends to have better and more stable generalization perfor-
mance, as verified in [21–23].

2.2. OS-ELM and ReOS-ELM. OS-ELM, originated from
basic ELM, is an online sequential learning algorithm that
can learn data not only one-by-one but also chunk-by-chunk
with fixed or varying chunk size [19]. It consists of two phases:
initialization phase and sequential learning phase. In the
initialization phase, a base ELMmodel is trained using a small
chunk of initial training data. For instance, the output weight
for an initial training dataset 𝑆

0
with 𝑁

0
training samples is

obtained as

𝛽
0
= P
0
H
0
T
0
, (9)

P
0
= (H𝑇
0
H
0
)
−1

. (10)

Then, in the sequential learning phase, when a new chunk
of training data arrives, the output weights are updated by

𝛽
(𝑘+1)

= 𝛽
(𝑘)

+ P
𝑘+1

H𝑇
𝑘+1

(T
𝑘+1

−H
𝑘+1
𝛽
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) , (11)
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H𝑇
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−1

H
𝑘+1

P
𝑘
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where 𝑘 + 1 indicates the (𝑘 + 1)th arriving training data
with 𝑘 starting from zero and H

𝑘+1
is the hidden layer out-

put for the (𝑘 + 1)th arriving training data.

One major problem in OS-ELM is that, if the
term H𝑇

0
H
0
is singular, then (10) is unsolvable. Therefore,

to avoid the singular problem, OS-ELM restricts that the
initial training dataset 𝑆

0
should have at least 𝐿 (hidden

node number) distinct samples. To improve this situation,
ReOS-ELM [20] adds a regularization term to (10); that is,

P
0
= (H𝑇
0
H
0
+ 𝜆I)
−1

. (13)

According to the ridge regression theory, adding a small
positive value into the diagonal of H𝑇

0
H
0
can also avoid

singular problem when the number of initial training data
is less than the hidden nodes number. Therefore, ReOS-
ELM can resolve the constraint suffered in OS-ELM, making
it suitable for case when initial number of data is small
(e.g., adaptive control problems). In addition, similar to
ReELM, the term 𝜆 in (13) of ReOS-ELMmainly controls the
relative importance between the training error and the norm
of output weights. The theory behind the improvement of
ReOS-ELM over OS-ELM can be explained using the same
reason of ReELM over basic ELM.

3. Proposed FOS-ELM

In this section, an improved ReOS-ELM, namely, fully online
sequential-extreme learning machine (FOS-ELM), is pro-
posed. It does not need a small chunkof initial training data to
construct a basemodel but can achieve the same performance
with ReOS-ELM.

Considering an initial training dataset 𝑆
0

= {(𝑥
𝑖
, 𝑡
𝑖
) |

𝑖 = 1, . . . , 𝑁
0
} with a corresponding hidden layer output

matrix H
0
, using (9) and (13), the output weights 𝛽0 are

calculated as
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0
.
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1
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0
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1
, using (9) and (13) again, the output

weights 𝛽1 should be obtained as
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where T
1
= [𝑡
𝑁0+1

⋅ ⋅ ⋅ 𝑡
𝑁0+𝑁1

]
𝑇. Now expanding the last two

terms on the right-hand side of (15)
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Then, combining (15), (16), and (17), 𝛽1 is obtained as
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Now, considering only 𝑆
1
, 𝛽1 can be obtained as

𝛽
1
= (H𝑇
1
H
1
+ 𝜆I)
−1

H𝑇
1
T
1
. (19)

Comparing (18) and (19), it is obvious that (19) can be
obtained from (18) if and only if 𝛽0 = 0 and K

0
= 𝜆I.

Therefore, by initializing 𝛽0 = 0 and K
0

= 𝜆I, the initial
training datasets 𝑆

0
can be omitted, while amodel for 𝑆

1
can

still be constructed. In other words, the batch training in the
initialization phase of ReOS-ELM is automatically integrated
in FOS-ELM. Thereby, FOS-ELM becomes a fully online
sequential learning algorithm and still can achieve the same
learning performance with ReOS-ELM.

To make it clear, the proposed FOS-ELM algorithm is
rewritten as below.
Step 1. Assign random values for input weights, and
set 𝛽0 = 0 and P

0
= (𝜆I)−1.

Step 2. For the (𝑘 + 1)th arriving training data,
(a) calculate the hidden layer output matrixH

𝑘+1
;

(b) update the output weights 𝛽(𝑘+1) using (11) and (12).
In short, FOS-ELM is a fully online sequential learning

algorithm. It is simpler than ReOS-ELM and easier to imple-
ment. Compared with OS-ELM and ReOS-ELM, FOS-ELM
is more suitable for learning problems in which the training
data is difficult to collect in advance. To emphasize the
advantages of FOS-ELM, a detailed comparison among OS-
ELM, ReOS-ELM, and FOS-ELM is summarized in Table 1.

As declared in [19], the sequential learning algorithm
(11) and (12) of OS-ELM is similar to recursive least-squares
(RLS) algorithm, so that all the convergence results of RLS
can be applied. It has to be noted that, in fact, ReOS-
ELM and FOS-ELM also share the same sequential learning
update algorithm with OS-ELM, so the convergence results
of RLS can also be applied to all the three algorithms, OS-
ELM, ReOS-ELM, and FOS-ELM. In other words, if the
three algorithms are applied to the adaptive controller, the
controller stability can be guaranteed.

4. Case Study on Adaptive Engine AFR Control

To demonstrate the usefulness of the proposed algorithm,
FOS-ELM is applied to the adaptive control of engine AFR
based on a simulated enginemodel.The effectiveness of FOS-
ELM in this application is discussed and a comparison with
SGBP is provided in this section.

Controller Engine

FOS-ELM

yu

−+ e

yr

Figure 1: Adaptive engine AFR controller.

4.1. Adaptive Engine AFR Control. Engine AFR refers to
the mass ratio of air to fuel present in the engine. It is a
parameter that critically affects the engine emissions, brake-
specific fuel consumption, and power [25]. In general, the
AFR can be set to different values for different purpose.
For example, using gasoline as the fuel, the AFR should be
controlled to the stoichiometric AFR of gasoline, 14.7 : 1, in
order to keep maximum conversion efficiency of the three-
way catalytic converter [25]. In case higher engine torque is
demanded, the AFR should be controlled to 12.5 : 1 in order to
achieve the best engine power. For the best brake-specific fuel
consumption, the AFR should be set to 16 : 1. Consequently,
controlling the AFR is essential for maintaining the desired
engine performance. However, the combustion process of
an engine is a complex dynamic system that involves many
uncertainties [11, 15]. Therefore, for illustrative purpose, this
paper applies the adaptive control scheme, based on the
proposed FOS-ELM, to the AFR control.

Theoretically, the dynamics of AFR can be described by
a discrete approximated model in which the control appears
linearly [1]:

𝑦
𝑘+1

= 𝑔 (𝑦
𝑘
, . . . , 𝑦

𝑘−𝑛+1
, 𝑢
𝑘−1

, . . . , 𝑢
𝑘−𝑛+1

)

+ 𝜑 (𝑦
𝑘
, . . . , 𝑦

𝑘−𝑛+1
, 𝑢
𝑘−1

, . . . , 𝑢
𝑘−𝑛+1

) 𝑢
𝑘
,

(20)

where 𝑦 is the AFR, 𝑢 is the control input, 𝑘 is the time
step, 𝑛 is the system order, and 𝜑(⋅) must be a nonzero func-
tion. If both 𝑔(⋅) and 𝜑(⋅) are known, the following control
law can be used to exactly track the desired AFR, 𝑦

𝑟
:

𝑢
𝑘
=

𝑦
𝑟𝑘+1

𝜑 (⋅)
−
𝑔 (⋅)

𝜑 (⋅)
. (21)

Therefore, assuming that FOS-ELM consists of two
functions 𝑔(⋅) and 𝜑(⋅), the purpose of FOS-ELM is to
adaptively learn 𝑔(⋅) and 𝜑(⋅) by self-tuning the parameters
of 𝑔(⋅) and 𝜑(⋅), based on the error from the system output
feedback (i.e., 𝑔(⋅) → 𝑔(⋅) and 𝜑(⋅) → 𝜑(⋅)). The engine
AFR control scheme is illustrated in Figure 1.

The purpose of the controller is to control the amount of
fuel injected to the engine so that the corresponding AFR
can match the target AFR. The control signal 𝑢 in (21) is
the fuel injection time of the injectors. The longer the fuel
injection time is, the larger the amount of the fuel injected is.
To simplify the problem and focus on performance of FOS-
ELM, a simulated engine model (465Q gasoline engine at
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Figure 2: Effectiveness of 𝜆 for (a) square wave reference; (b) sine wave reference.

Table 1: Comparison among OS-ELM, ReOS-ELM, and FOS-ELM.

OS-ELM ReOS-ELM FOS-ELM
Objective function H𝛽 − T

2 H𝛽 − T
2 and 𝛽



2 H𝛽 − T
2 and 𝛽



2

Parameters Hidden node number 𝐿 Hidden node number 𝐿
Regularization parameter 𝜆

Hidden node number 𝐿
Regularization parameter 𝜆

Training method
Initial offline batch training and
followed by online sequential

training

Initial offline batch training and
followed by online sequential

training
Online sequential training

Initial sample number𝑁
0

𝑁
0
≥ 𝐿 1 ≤ 𝑁

0
≤ 𝐿 N0 = 0

Overfitting risk Yes No No
Learning performance Same as ELM Same as ReELM Same as ReELM

engine speed of 3500 rpm and manifold pressure of 85 kPa)
[26] is used in this paper, given as

𝑦
𝑘+1

= 0.2 sin (𝑦
𝑘
) + 3.5 (9 − 𝑢

𝑘
) . (22)

Two reference AFR outputs (𝑦
𝑟
) are used to evaluate the

performance of FOS-ELM. The first one is a square wave,
of which the amplitude changes between 12.5 and 14.7 every
50 steps. This can test the step response of the adaptive
controller. The other reference command is a sine wave,
of which the amplitude varies between 12.5 and 14.7 with
a period of 100 steps. This, on the other hand, can test

the continuous tracking performance of the controller. In
addition, all the simulations in the following sections were
implemented in MATLAB and executed on a PC with Intel
Core i7 CPU and 4GB RAM onboard.

4.2. Performance of FOS-ELM. The performance of FOS-
ELM on the adaptive AFR controller is evaluated by three
cases. As compared to OS-ELM, there is a regulariza-
tion parameter 𝜆 introduced in FOS-ELM. Therefore, the
first case is to test the effectiveness of 𝜆. Moreover, as
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Figure 3: Norm of output weights with varying 𝜆 at (a) 𝐿 = 10; (b) 𝐿 = 30; (c) 𝐿 = 50.

there is another important parameter in FOS-ELM, namely,
the hidden nodes number 𝐿, the influence of these two
parameters on the performance of FOS-ELM should also
be analyzed. Thus, in the second case, simulations under
various 𝜆 and 𝐿 values are presented. In the last case, distur-
bances are introduced to the reference command in order to
test the robustness of FOS-ELM.

4.2.1. Effectiveness of 𝜆. In this case, the FOS-ELM used in
the adaptive AFR controller was run under two 𝜆 values: 𝜆 =

0 and 𝜆 = 0.001. For both situations, 𝐿 was set to 30. The
simulation results are presented in Figure 2.

It can be seen that the tracking performance of FOS-ELM
without using 𝜆 is quite poor as compared to that with 𝜆.
This is mainly due to the singular problem. It should be
noted that when 𝜆 = 0, it becomes a special case of OS-
ELM which trains the base model using the first arriving
training sample. As in this adaptive problem, the training
sample arrives in a one-by-one manner; the number of
initial training data in the first step is also one. This is
against the restriction of OS-ELM that the initial training
dataset should have at least 𝐿 distinct samples in the initial
phase.Thus, the term H𝑇

0
H
0
ismainly determined by the first

arriving training sample and the singular H𝑇
0
H
0
is inevitable.
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Figure 4: Influence of 𝐿 for (a) square wave reference; (b) sine wave reference.

Furthermore, the rank of P
𝑘
(used in the update phase as

given in (12)) basically remains at one in the sequential
learning phase, so the learning performance of the FOS-
ELM without 𝜆 is simply equal to an OS-ELM with only
one hidden node; even a large number of hidden nodes
are set. As a result, the tracking error of FOS-ELM without
using 𝜆 cannot be eliminated.

4.2.2. Influence of 𝜆 and 𝐿. Referring to (7), the regularization
parameter 𝜆 mainly controls the relative importance of the
two terms: training error and norm of output weights.
If 𝜆 is small, reducing the training error is more important.
Otherwise, minimizing the norm of output weights is more
important. Therefore, by setting 𝜆 to a small value, the
tracking error will rapidly be reduced. However, if 𝜆 is too

small (very close to 0), the matrix (H𝑇H + 𝜆I) will tend
to become singular, which leads to the situation suffered
in the first case. Moreover, the hidden node number 𝐿 is
another factor that can affect the performance of FOS-ELM.
It mainly controls the dimensionality of the model. Since,
in all the variants of ELM, the parameters in the hidden
node are randomly generated, it should follow that the larger
the hidden node number is, the better the representation
power is. As 𝜆 is already introduced in the FOS-ELMmodel,
the overfitting problem due to large hidden node number is
avoided. To analyze the influence of 𝜆 and 𝐿 on the model,
simulations were run at 4 different 𝜆 values (10−7, 10−5, 10−3,
and 10

−1) and 3 different 𝐿 values (10, 30, and 50). The norm
of the output weights of the FOS-ELM at each step was
recorded. The results are shown in Figure 3.
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Figure 5: Effect of disturbance for (a) square wave reference; (b) sine wave reference.

The results in Figure 3 show that the influence of 𝐿 is
more significant than 𝜆. As shown in Figure 3(a), when 𝐿 is
small, the norm of the output weights tends to “blow up,”
especially when 𝜆 is close to zero (e.g., 𝜆 = 10

−7).This “blow
up” often leads to bad generalization performance [24]. On
the contrary, as shown in Figure 3(c), if 𝐿 is set to a large
number, say 50, then different 𝜆 values donot affect the norm
of output weights too much; the trend at different 𝜆 basically
remains the same. This indicates that 𝜆 is not very sensitive
to the norm of output weight, as long as it is not zero and 𝐿 is
sufficient. In order to investigate how the change of 𝐿 affects
the controller performance, simulations were run at two
different 𝐿 values: 𝐿 = 10 and 𝐿 = 50, with a fixed 𝜆 =

0.001. The results are shown in Figure 4.
From Figure 4, it can be seen that a FOS-ELM with a

larger number of hidden nodes has better tracking perfor-
mance. This verifies the idea that the hidden node number is
in proportion to the representation power. As a remark, these
simulation results are in accordance with the proof of ELM
by Huang et al. [13].

4.2.3. Robustness of FOS-ELM. One powerful feature of
adaptive controller is its robustness to disturbance.Therefore,
to evaluate the robustness of FOS-ELM on this adaptive
control application, two disturbances were introduced to the
reference AFR command at 𝑘 = 120 and 𝑘 = 180. The sim-
ulations were run at 𝜆 = 0.001 and 𝐿 = 50. The results are
presented in Figure 5. It shows that although disturbances are
introduced, the FOS-ELM adaptive controller can converge
quickly back to the reference command, indicating that FOS-
ELM is quite robust to disturbance.

4.3. Comparison to SGBP. SGBP, being a variant of BP for
sequential learning application [9], is a typical algorithm for
adaptive neural control. In order to show the benefits of

FOS-ELM over SGBP on adaptive neural control, SGBP was
also applied to the adaptive engine AFR control problem,
and a comparison between FOS-ELM and SGBP was car-
ried out. Similar to FOS-ELM, SGBP has two parameters,
known as learning rate and the hidden node number. In the
comparison, the hidden node number for SBGP is 20, and
three learning rates (𝜂 = 0.005, 0.01, 0.05) were assigned.
For FOS-ELM, the hidden node number is set to 50, with
a regularization factor of 0.001 again. The results of the two
methods are provided in Figure 6.

The comparative results from Figure 6 imply two things.
The first one is that SGBP is quite sensitive to its learning
rate. As shown in Figure 6(a), a small learning rate leads to
a slow convergence speed, while, as shown in Figure 6(c), a
large learning rate leads to an oscillation in the convergence
process. It was found from some preliminary tests (not shown
here) that the learning rate is also strongly associated with
the hidden node number. In other words, to determine
the structure and parameters of SGBP, expert experience is
necessary [11]. Comparing to SGBP, FOS-ELM is less sensitive
to parameters. Usually, the regularized parameter 𝜆 can be
set to a small value like 𝜆 = 0.001, and the hidden node
number 𝐿 can be set to a large value like 50. This has already
been verified in the previous section.

Another implication from Figure 6 is that FOS-ELM
can achieve better global control performance as compared
to SGBP. Referring to Figure 6(b), every time when the
amplitude changes, several steps were required by SGBP to
adapt to the desired reference. This shows that SGBP always
tends to “forget” what it has learnt. The reason behind this
phenomenon is that SGBP updates both input weights and
output weights to achieve the desired output, which may
easily suffer from local minima (i.e., optimal for the most
recent arrived data). Thus, when the desired output changes,
the weights need to be adjusted again for tracking the desired
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Figure 6: Controller performance for (a) SGBP with 𝐿 = 20 and 𝜂 = 0.005; (b) SGBP with 𝐿 = 20 and 𝜂 = 0.01; (c) SGBP with 𝐿 =

20 and 𝜂 = 0.05; (d) FOS-ELM with 𝐿 = 50 and 𝜆 = 0.001.

output. In contrast, the theory behind FOS-ELM is to seek for
a global optimal (i.e., optimal for all the seen data). Hence, as
shown in Figure 6(d), once the model is learnt, the controller
can directly adapt to the desired output even if it changes
frequently. In fact, by referring to Figure 3, the norm of the
output weights becomes stable after several learning steps,
which also verifies that the model has been learnt and no
further update is required. This unique feature of FOS-ELM
is highly suitable for adaptive control applications.

5. Conclusions

In this paper, a novel fully online learning algorithm entitled
FOS-ELM is proposed for adaptive neural control. It keeps

the same learning performance with ReOS-ELM but discards
the initial batch training phase adopted in ReOS-ELM.
Without the initial training phase, FOS-ELM becomes easier
to be implemented and more suitable for online learning
task, of which the training data is difficult to be provided in
advance, for example, adaptive control problems.

To demonstrate its effectiveness, the proposed FOS-ELM
is applied to the adaptive control of engine AFR based on a
simulated engine model. As the performance of FOS-ELM is
determined by two important parameters, namely, regular-
ization parameter and hidden node number, the influence of
these parameters was analyzed. Furthermore, a comparison
between FOS-ELM and SGBP on the adaptive control appli-
cation was also carried out. The results imply the following.
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(1) Without a regularization parameter, FOS-ELM
becomes a special OS-ELM and leads to the singular
problem, but, with a regularization parameter,
both singular and overfitting problems are
solved simultaneously, leading to better tracking
performance.

(2) The norm of output weights is less sensitive to the
regularization parameter but it is sensitive to the
number of hidden nodes. It is found that a large
number of hidden nodes with a small regularization
parameter can result in a smaller norm of output
weights and better tracking performance.

(3) SGBP always tends to “forget” what it has learnt, as its
algorithm easily falls into a local optimal. Conversely,
FOS-ELM aims to seek for a global optimal. Thus,
once the model is learnt globally, the controller can
directly adapt to the desired output even if the desired
output changes frequently. This is the unique feature
of FOS-ELM.

As FOS-ELM can achieve good tracking and convergence
performance than traditional SGBP, it is more preferable for
adaptive neural control applications.
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