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Engine power, brake-specific fuel consumption, and emissions relate closely to air ratio (i.e., lambda) among all the engine
variables. An accurate and adaptive model for lambda prediction is essential to effective lambda control for long term. This paper
utilizes an emerging technique, relevance vector machine (RVM), to build a reliable time-dependent lambda model which can be
continually updated whenever a sample is added to, or removed from, the estimated lambda model. The paper also presents a new
model predictive control (MPC) algorithm for air-ratio regulation based on RVM. This study shows that the accuracy, training, and
updating time of the RVM model are superior to the latest modelling methods, such as diagonal recurrent neural network (DRNN)
and decremental least-squares support vector machine (DLSSVM). Moreover, the control algorithm has been implemented on a
real car to test. Experimental results reveal that the control performance of the proposed relevance vector machine model predictive
controller (RVMMPC) is also superior to DRNNMPC, support vector machine-based MPC, and conventional proportional-
integral (PI) controller in production cars. Therefore, the proposed RVMMPC is a promising scheme to replace conventional

PI controller for engine air-ratio control.

1. Introduction

Engine power, brake-specific fuel consumption, and emis-
sions relate closely to air ratio among all the engine variables
[1]. Air ratio is also called lambda. It indicates the amount
that the actual available air-fuel ratio mixture differs from the
stoichiometric air-fuel ratio of the fuel being used. Manzie et
al. [2, 3] mentioned that if the air-fuel ratio is 1% lower than
its stoichiometric ratio (e.g., 14.7:1 for gasoline), carbon
monoxide (CO) and hydrocarbon (HC) emissions will be
significantly increased. An air-fuel ratio that is 1% higher
than the stoichiometric ratio produces more nitrogen oxides
(NOx), up to 50%. Modern automotive engines are con-
trolled by the electronic control unit (ECU) which usually
uses look-up tables with compensation of a proportional-
integral (PI) closed-loop controller for lambda regulation.
Since the nature of engine combustion is multivariable, time-
varying, time-delay, and chaotic, look-up tables with PI

controller cannot produce desirable and accurate lambda
control [2, 3].

So far, there are only a few papers focusing on air-
ratio control, but some control strategies were developed for
air-fuel ratio (AFR) control in the past decade, including
the sliding mode control [4], radial basis function neural-
network feed-forward feedback control [5], and model pre-
dictive control (MPC) using neural network-based models
[6-8]. In the aforementioned researches, the most appro-
priate and the latest technique is MPC based on diagonal
recurrent neural network (DRNN) [8] because of its fast
computational time. The MPC is very robust and suitable for
a multivariable, time-varying, and delay system that matches
the characteristic of modern engine AFR control systems [9].
A reliable engine performance model is a core component
of the MPC. However, the engine models developed in [5-
8] were surrogate models, which were trained from the
data generated by empirical equations. Moreover, there were



many assumptions in the empirical equations. In fact, many
coefficients in the empirical equations are also difficult to
determine for a real engine [10]. Therefore the neural-
network prediction models derived from the data generated
by empirical equations cannot reflect the actual performance
of the controller in real engines. Meanwhile, their control
target and engine models only focused on AFR instead of
air ratio. AFR control is ineffective for engine performance
control because it does not consider the fuel variation
whereas air-ratio is a fuel independent index. Furthermore,
in [5-8], only simulation tests were presented and the
testing on real car engines has never been done. Besides,
the inherent drawbacks of the neural network (NN) would
make itself difficult put into practice including multiple
local minima, user burden on selection of optimal NN
structure, and overfitting. Another practical challenge to
the modelling of engine lambda performance is that the
lambda model is required to be updated for any changes in
engine performance such as the engine aging or fair user
modification on it. Therefore, the current research objective
is to develop a reliable and nonlinear time-series prediction
model for chaotic engine lambda behaviour and the model
should have ability of online update as well.

Least-squares support vector machine (LS-SVM) is an
alternative technique of nonlinear modelling [11, 12], which
combines the advantages of NNs (handling large amount
of highly nonlinear data) and nonlinear regression (high
generalization). In recent years, LS-SVM has been success-
fully applied to a wide range of engineering applications
[10, 13-17]. Hence it is believed that LS-SVM can also be
applied to estimate the lambda model. However, LS-SVM is
just an offline algorithm which cannot continually update
the lambda prediction models with the subsequent samples
for correction. Although there is an online version of LS-
SVM [18] based on pruning, namely, decremental least-
squares support vector machine (DLSSVM), it still suffers
from two drawbacks. The first one is that there are two user-
defined hyperparameters in DLSSVM which seriously affect
the model accuracy and generalization. The optimization
of these two hyperparameters is time-consuming and the
optimality of these hyperparameter values is not guaranteed
after decremental update. Since the number of support
vectors typically grows linearly with the size of the training
dataset, DLSSVM makes unnecessarily liberal use of basis
functions which results in long computational time for real-
time control applications.

To overcome the deficiencies of neural networks and LS-
SVM, Tipping and Faul [19] proposed an advanced mod-
elling technique, namely, relevance vector machine (RVM).
RVM is an online machine learning technique which utilizes
more flexible and sparser model without setting additional
regularization parameters. RVM takes shorter training time
than NN. In addition, the model updating time of RVM is
also typically fast so that the RVM model can be continually
updated whenever new lambda samples arrive.

In view of the deficiencies of the existing work and
the chaotic nature of engine combustion [20] as well as
the advantages of RVM, a promising avenue of research
is to apply relevance vector machine and model predictive
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controller together to complicated engine systems and test it
on a real car engine for practical examination of the MPC.
This paper presents a nonlinear MPC algorithm for air-
ratio control based on an RVM model for a real car engine.
The method is new for real-time engine lambda control.
The RVM model can be updated continually to model the
engine performance variation and severely nonlinear and
chaotic natures. Based on the multiple-step-ahead prediction
of the lambda, an optimal control signal is obtained to
regulate the lambda to the desired value upon the change of
engine operating condition. In order to show the advantages
of the presented control algorithm over the existing algo-
rithms, the control performance of the proposed relevance
vector machine model predictive controller (RVMMPC) is
compared with the latest neural network-based method for
air-fuel ratio control, diagonal recurrent neural network
MPC (DRNNMPC) [8] and conventional PI controller
in production cars. Besides, it is interesting in extend-
ing the decremental least-squares support vector machine
(DLSSVM) [18] to MPC and making comparison with the
RVMMPC for engine air-ratio. To the best knowledge of the
authors, this research is the first attempt at extending online
LS-SVM and RVM to the domain of automotive engine air-
ratio modelling and control.

2. Relevance Vector Machine

In the first part of this section, the algorithm of RVM
modelling is briefly reviewed. In order to handle the online
update of RVM model, an online sequential algorithm is
adopted and described in the last part of this section.

2.1. RVM Modelling. Given a training dataset D of N input
vectors X,, n = 1 to N, along with N corresponding scalar-
valued output y,. The input vector x, € R™ contains the
previous measured engine time-series parameters including
fuel injection time, throttle position, and air ratio at a
specific time instant. The corresponding air ratio at that
time is defined as the output y, € R which is assumed to
contain zero-mean Gaussian noise with variance ¢2. Hence,
the probability of prediction error ¢, for y, is a Gaussian
distribution of zero mean and variance ¢, that is, p(e, |
0%) = N(0, 0?), with

Yn = f(xnaw) + é&ns (1)

Py | X0, W,0%) = N(P, 02), (2)

where ¥, = f(x,,w) is the output prediction of the true
value y,, and w = [wy,...,wn] is the weight vector for the

RVM model.
Generally, the prediction can be represented by
y=fxw)
N
=wo+ > waK(X,X,) (3)
n=1

= wo(x),
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where K(x,x;) is a basis
[1K(x, x1) - - - K(xs, xy)]T. In the current research,
radial basis function (RBF) is chosen as the basis function K
because it is commonly used for modelling problem [10].

Under the aforementioned formulation, the likelihood
function of the output vector y = y,,n = 1 to N, is
constructed by a multivariate Gaussian:

function and ¢(x) =

N2 - lly = 3II°
plylw,0?) = 2m) ™0 Nexp{—mz ,  (4)

where § = ®w' and ® represents an N x (N + 1) design
matrix with the notation ® = [¢(x),...,¢ (xy)]', and
¢(x,) = [1K(Xp, x1) - - - K(xp x5)]", n =110 N.

The likelihood function, (4), is complemented by a prior
over the weights, w = {w,}, p = 0 to N, to control the
complexity of the model and avoid overfitting. The prior is
a zero-mean Gaussian distribution and is defined over every
weight w, as follows:

N 2
pwla) = (271)71\7/21_[&}17/2 exp(—(x’;vp) (5)
p=0

The hyperparameter vector & = [ag - - - ay]T that
controls how far each weight w, is allowed to deviate form
zero. Given a, using Bayes’ rule, the posterior over w is
expressed as

5 Py lw,o®)pwla)
pwlya0®) = o0y [a02) =N(w|uZX). (6)

The posterior mean g and covariance X for w are given as
follows [19]:

-1
= (A+020"®)
(7)
p=w=o 20y,

where A is defined as diag (ap - - - an).

The posterior mean p is an estimation of the weight
vector w for prediction. The only unknowns in (7) are the
hyperparameters & which can be estimated via a type-1I max-
imum likelihood procedure [19]. It is called sparse Bayesian
learning which is formulated as the local maximization with
respect to & of the marginal likelihood or, equivalently, its
logarithm L(«):

L(@) = log p(y | 0) =log | _p(y | w,0)p(w | @)dw

1
- [N log27 +loglC| +y"C ly],
(8)

where C = 021 + ®AD".

By maximizing (8) over &, the most probable values anp
can be generated. Then, A can be obtained by substituting
ayp into (7). Afterwards, the covariance X and posterior

mean ¢ = [go, 1. .. ,/,tN]T can be estimated. Therefore, the
RVM model f can be found by settingw = u:

Y=y =fxw) = f(xp),

N
Yp = po+ D K (X,X4),
! Zl 9)

N
Yp =tot Z,Un exp<_ Ix azxn” >>
n=1

where J is the prediction of the output lambda with the
unseen input data x containing the recent measured engine
data series, which is explained in Section 4.1. One crucial
observation is that the optimal values of many hyperparam-
eters «, are typically infinite. Considering that w, = u, oc
(1/a), this leads to a parameter posterior infinitely peaked
at zero for many weights w,. In consequence, the posterior
mean p consists of very few nonzero elements. This results
in good sparseness for RVM whereas LS-SVM and NN do
not have this advantage. A good sparseness implies that the
computational time for prediction can be shortened.

2.2. Online RVM Modelling. In order to train and update
the RVM model continually, an online algorithm for RVM
[19] is employed. The algorithm starts with an empty set of
basis function for the RVM model and sequentially adds basis
functions ¢, = [1K(X,,Xx) - - - K(xs,xy)]" to increase the
marginal likelihood and modify their corresponding weights
wy. Within the same principal framework, the likelihood
can also be updated by deleting those basis functions
which subsequently become redundant. Removing a basis
function ¢, implies that the corresponding x, is no longer
important and can be excluded from the design matrix ®
in constructing the RVM model f, which can be simply
done by setting the corresponding hyperparameter a, equal
to infinity (practically a very large value). In this way, the
corresponding weight value w, = p, oc (1/a;) becomes zero.
Since wy is a bias corresponding to no training data, only
the weights wy, ws,..., wy are considered. The data x,, with
nonzero weights w,, n = 1 to N, are referred to relevance
vectors. Since the basis functions are sequentially added to
or deleted from the lambda model by RVM, the likelihood
can be continually updated and hence this mechanism makes
online update of the lambda model feasible.

In the following discussions, the constraints to add and
delete basis function from the RVM lambda model are given,
and then the detailed online RVM algorithm is presented.

2.2.1. Constraints for the Basis Functions Update. In (8), the
covariance matrix C includes all basis functions in the RVM
prediction model. When it is necessary to remove a basis
function ¢, from C, the new covariance matrix C_, with the
influence of removed basis function ¢, can be expressed as
follows:

Conl@) = 0’1+ Y a;'¢;¢]. (10)
j#n



It was shown in [21] that L(«) has a unique maximum with
respect to a:

SZ
W = Q%_”Sn, if Q; > Sn, (11)
a =0, ifQ:<S,, (12)
where
Sn = $nC rpm, (13)
= ¢$:.C7y, (14)

with ¢, = [1K(xs,x) - - - K(xpxy)]5, n=1toN.

The results of (11) and (12) imply that if ¢, is currently
included in the lambda model (i.e., &, < ) and Q% < S,,,
then ¢, can be deleted by setting a,, to co. On the other hand,
if ¢, is currently excluded from the lambda model (i.e., a0, =
o) and Q2 > S, then ¢, can be added by setting a,, to some
optimal finite values. With these constraints, an online RVM
algorithm can be implemented here in after.

2.2.2. Online Sequential Algorithm of RVM. The steps for the
implementation of the online RVM algorithm are described
as follows.

(1) Initialize 0% to some sensible values (e.g., var[y] x0.1)
and all &, are notionally set to infinity.

(2) Initialize S, and Q, with a single basis function ¢,
from (13) and (14) and compute new a, from (11)
which can be simplified as follows.

2

¢,

(15)

éry

(3) Explicitly compute g and X (which are scalars
initially), along with initial values of S, and Q, for
all N basis functions ¢, using (7) and (10)—(14).

(4) Select a candidate basis function ¢, from the set of all
N basis functions.

(5) Compute 6, = Q% — S,..

(6)1f 0, > 0 and a, < oo (i.e., ¢, is included in the
model), then reestimate «,, using (11).

(7) If 0, = 0 and &, = 0, then add ¢, to the model with
updated «,,.

(8) 1f0, < 0and a,, < o0, then delete ¢, from the model
and set a, = 0.

(9) Estimate the noise level, and update o2 as follows:

A2
ot = Z'!Z aY|>|: . (16)
n=1 Xn&nn
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(10) Recompute or update X, g and all S, and Q,, using (7)
and (10)—(14).

(11) If converged then terminate, otherwise go to Step 4.

Remarks. For the initialization in Step (2), a potential basis
function could be the one with the largest normalized
projection onto the output vector which gives the largest
initial likelihood. In Step (4), a candidate basis function ¢,,
both included in and excluded from the current RVM model,
must be selected for updating but the selection is purely at
random. In Step (10), X, g and all S, and Q,, are recomputed
in full forms of (7) and (10)—(14). In Step (11), attaining a
local maximum of the marginal likelihood must be judged.
The online algorithm terminates when the changes in L(a)
for all basis functions in the RVM model are smaller than
107° and all other 6,, < 0 [19].

The aforementioned online sequential algorithm for
RVM ensures to increase the marginal likelihood at each
step until a local maximum is attained. Although adding
and deleting basis functions appear notionally to be inde-
pendent, posterior statistics for all basis functions are being
maintained concurrently; that is, all elements of g and X
corresponding to removed basis functions are trivially zero.

3. MPC with RVM Model

The structure of the proposed RVMMPC is shown in
Figure 1. The controller consists of the RVM engine lambda
model and the optimizer based on Brent’s method [22]. The
RVM engine lambda model predicts the engine response over
a specified time horizon. The predictions are used by the
optimizer to determine the tentative fuel injection time u/,
that minimizes the following performance criterion over the
specified time horizon, and then the optimal fuel injection
time signal u is sent to the engine:

N,

min J() = Y (e (t+]) - yp(t+J'))2

j=Ni

+PZ

(17)

"(t+j-1) —u(t+]—2))

where N; and N, define the prediction horizon. t is the time
step. N, is the control horizon. p is a user-defined control
weighting factor which penalizes excessive movement of the
control signal (i.e., the fuel injection time). The variables
u(t + j—1)and u'(t + j— 2) in the second part of (17)
are the tentative fuel injection time at the time step t + j —1
and t + j — 2, respectively. The second part of (17) ensures
the stability of the controller output. y,(t + j) is the target
lambda at the time step ¢ + j, and y,, is the predicted lambda
by the RVM model which is computed from (9) at the time
step t+ j, from which the input vector x consists of three time
series of engine control parameters: u'(t +j — 1), u'(t +j —
2),..., throttle position TP(t + j — 1), TP(t+j —2)..., and
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previous measured lambda y(t+j — 1), y(t+j—2)....In
other words,

N
. lIx — x|
yp(t+j) =+ Zﬂnexp<* p )

n=1

(18)

3.1. Single-Dimension Optimization Approach. The original
optimization problem involved in this paper is multidimen-
sional and constrained with the tentative control signals over
the control horizon N, and tentative fuel injection times
u(t), u'(t +1),....,u (t + N, — 1), which can minimize

the objective function J(u') of (17). Then the predicted
lambda values, y,(t + N1),y,(t + Ny + 1),..., yp(t + Ny),
can trace the target lambda values, y.(t + Ni),y,(t + Ny +
1),...,y,(t + N;), by using the optimized fuel injection
time series. Each fuel injection time is normally bounded
within the range from 3 ms to 60 ms. However, the multi-
dimensional optimization always requires heavy computa-
tion, especially when constraints exist. Real-time control
applications often put emphasis on computational speed.
The research of [7] also showed that the one-dimensional
approach is efficient for real time AFR control and the overall
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tracking error is similar to that using multidimensional
optimization approach. Therefore, the optimization problem
to be solved is reduced to onedimensional. In this paper,
the control signal u is assumed to remain constant over the
control horizon. Therefore, the tentative control signal in the
objective function is also constant over the control horizon,
thatis, u'(t) = v/ (t+1),..., = u'(t+N,—1). In this way, only
one parameter u'(t) is needed to determine, and the final fuel
injection time at each time step u is set to be the optimal value
of u'(t).

3.2. Brent’s Method. There are many optimization methods
available in the literature; it is impossible to examine all of
them. For illustrative purpose, a well-known technique—
Brent’s method—is examined in this research. Brent’s

method is a robust and efficient optimization method. It
combines the typical parabolic interpolation and golden-
section search. The objective function in each iteration is
approximated by an interpolating parabola through three
existing points. The minimum point of the parabola is taken
as a guess for the minimum point if certain criteria are
met. Otherwise, golden-section search is carried out. The
advantage of this method is that the high convergence rate
of parabolic interpolation can be maintained without losing
the robustness of golden-section search [22]. According to
this advantage, Brent’s method was selected as the MPC
optimizer in this study. The general working principle of
Brent’s method is shown in Figure 2. The detail optimization
procedure of Brent’s method was presented in [22] and is
not presented herein. There are three parameters of Brent’s
method which are the initial interval of the input variable,
[a,b], that is the limit of the fuel injection time, as well as
the tolerance, fol, for stopping the optimization procedure.
The three variables are set at 3, 60, and 0.05, respectively,
because the fuel injection time varies within 3 to 60 ms from
0 to 100% throttle.

4. Implementation and Evaluation of RVM
Engine Air-Ratio Model

4.1. RVM Engine Air-Ratio Model Implementation. The
objective of the RVM engine lambda model is to predict
the future lambda y, from three time series of inputs: fuel
injection time u, throttle position TP, and previous measured
lambda y. The structure of the RVM model was chosen to
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FiGure 8: Lambda control results of pilot test 1 of (a) RVMMPC, (b) DLSSVMMPC, (¢) DRNNMPC, and (d) PI controller.

be second order (i.e., 2 past time steps) which gives the
minimum prediction error [7, 8], and the structure is shown
in Figure 3.

To obtain the engine data for building the engine
lambda model, 3000 data samples including lambda, fuel
injection time, and throttle positions were collected. These
3000 lambda samples were collected over a Honda Type-
R K20A i-VTEC engine controlled by a MoTeC MS800
programmable electronic control unit with nonfactory cal-
ibration data. A dyno test was done for collecting the data
samples. In the dyno test, the engine speed was ranged from
1500 r/min to 6500 r/min with random throttle positions
bounded between 5% and 65%. The lambda data samples
were collected using an in-car wide-band lambda sensor at
a sampling frequency of 200 Hz. The first 2000 data samples
were used as training dataset D to build the lambda model.
The last 1000 data samples were used as test dataset TEST
and the first 900 data samples of TEST were regarded as
update dataset UPDATE for real-time updates. The lambda
model was updated every 100 measured lambda data samples
during prediction. With respect to the training dataset

D, the test dataset TEST is unseen cases for testing the
generalization of the built lambda model.

4.2. Evaluation Criteria for Engine Air-Ratio Model. To
illustrate the accuracy, superiority, and online update ability
of the proposed RVM model, its prediction result was
compared with those obtained from the latest methods,
DLSSVM [18] and DRNN [8].

After obtaining the lambda model RM(x) with RVM
through the training algorithm presented in Section 2 over
D., RM(x) was then updated for 9 times with UPDATE, 100
data samples each time, to build the updated RVM lambda
model RM*(x). Apart from the RVM model, classical LS-
SVM was employed to build the lambda model DM(x)
over D. After that, DM(x) was updated with UPDATE but
employing the updating algorithm presented in [18] to
build the decremental LS-SVM model DM *(x). Moreover,
DRNN, the same modelling algorithm for AFR model
predictive control presented in [8], was applied to estimate
the lambda model, NN (x). The network was trained for 60
epochs. After that, NN(x) was updated with UPDATE but
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employing the dynamic back-propagation with automatic
differentiation technique presented in [8] to build the online
model NN*(x).

After constructing all RM*(x), DM*(x), and NN*(x),
the performance of the three lambda models can be eval-
uated in terms of accuracy. Since the range of lambda for
combustible mixture is very narrow, the prediction errors of
the above three models are presented by logarithmic mean
absolute error (LMAE), and they were evaluated one by one
against the test dataset, TEST, using (19):

T
LMAE=10g[%Z|)’kf*(Xk)|], (19)
k=1

w1
(=]

Y [ 'S
S S S

—
(=}

Fuel injection time (ms)

o

5 10 15
Time (s)

(b)

20 25 30

50

Fuel injection time (ms)
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Time (s)

(d)
FIGURE 9: Fuel injection time of pilot test 1 of (a) RVMMPC, (b) DLSSVMMPC, (c) DRNNMPC, and (d) PI controller.

20 25 30

where f*(xx) represents either RM™(x;), DM™(xx), or
NN*(x¢), % is the kth new input vector for lambda predic-
tion, y is the corresponding actual lambda value of f*(xx),
and T is the total number of predictions. The value of
T is equal to 1000 in this case study. Besides LMAE, the
accuracies of the three models were also evaluated by the
linear regression R? value. The prediction results between
the predicted lambda values and the corresponding actual
lambda values over TEST are shown in Figure 4.

Table 1 shows the LMAE and R? values of the three
lambda models. According to the LMAE values in Table 1,
the RVM lambda model RM™ (x) outperforms DM ™ (x) and
NN*(x) by approximately 4% and 29%, respectively. It is
believed that the accuracy of the RVM lambda model can
be significantly increased if the model update is continually
carried out. Moreover, as compared with DLSSVM, RVM has
better sparseness. This property is very important for online
control and system identification because the computational
time and the size of memory are fewer.

In addition to the improvement on prediction accuracy,
RVM can also reduce the time for training and updating
the lambda model significantly. Table 2 shows the model
training time, average model updating time, and cumulative
model updating time after nine times of updates. In Table 2,
the lambda model training and average model updating
time of RVM are 1.52's and 0.08 s, respectively. The lambda
model training time of RM™*(x) is the shortest among the
three lambda models. The average model updating time
of RM*(x), 0.08s, is only about one-sixth of DM*(x),
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0.52s. It is because in RVM, the updating procedure is
applied to every basis function individually while DLSSVM
has to work on a large matrix for its estimated inversion.
Moreover, the average model updating time of RM™(x) is
also about one-eleventh of NN*(x). This achievement may
be accomplished by the effective online algorithm of RVM.
The total cumulative model updating time saved by RVM
from DLSSVM and DRNN after 9 update iterations is 3.99 s
and 7.565, respectively. However, if the lambda model is
often updated, the cumulative model updating time saved
by RVM will be very significant. Obviously, RVM has more
advantage than DLSSVM and DRNN algorithms. As a whole,
the high accuracy and short updating time of the lambda
model using RVM make online model predictive air-ratio
control more feasible.

Experimental results show that the model accuracy,
model training time, and updating time of RVM are the
best among the aforementioned algorithms. Therefore, RVM
was confidently selected to implement the model predictive
engine air-ratio controller.

5. Implementation and Evaluation of RVMMPC

5.1. Experimental Setup. The proposed RVMMPC algorithm
was implemented and tested on a Honda Type-R K20A i-
VTEC engine with MoTeC M800 programmable ECU and
National Instrument (NI) USB-6259. The model predictive
control algorithm was implemented using MATLAB. MoTeC
M800 is mainly used for engine control, whereas NI USB-
6259 is used for sending control signal to the MoTeC ECU
via a LabVIEW interface program according to the MATLAB
MPC program embedded. In other words, NI USB-6259
serves as an interface between the MATLAB program and the
MoTeC ECU. Apart from fuel injector control, the MoTeC
ECU also contains many control maps, such as ignition map
and valve timing map, to maintain the engine operation. The
experimental setup and the LabVIEW interface program are
shown in Figures 5 and 6, respectively.

The initial offline training data for building the RVM
model were obtained using a wide-band lambda sensor
subject to random throttle positions and are discussed in
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TaBLE 1: LMAE and R? of different lambda models.

Lambda model LMAE Improvement in LMAE (%) R? Improvement in R? (%)
RM™*(x) 2.4112 — 0.9868 —
DM*(x) 2.3166 4.08* 0.9816 0.53?
NN*(x) 1.8674 29120 0.9511 3.75b
‘RVM over DLSSVM,
PRVM over DRNN.
50 5.2. Pilot Test 1: System Tracking Ability. In pilot test 1, the
45 test cycle is shown in Figure 7 where the throttle position
s 40 changes from 0 to 50% throttle (i.e., partial throttle). In
g ig this test, the lambda value is needed to track the target
3% > values from the stoichiometric value (1.00) to a value
250 for the best brake-specific fuel consumption (1.05) as the
Z 15 throttle position is changed. This lambda value for such
E 10 partial throttle is a normal requirement for automobiles.
5 After choosing the sampling time to be 0.005 s, the tracking
0 ability of the RVMMPC can be examined. By testing many
0 10 20 30 40 50

Time (s)

FiGure 13: Throttle position against time in pilot test 3.

the pervious section. There were three pilot tests in this
study. The tests evaluate the tracking error, robustness, and
adaptability of the controllers respectively.

values around the setting used in [8], the parameters of
the optimizer were chosen as Ny = 1, N, = 10, p =
0.5, and N, = 3. With the test cycle shown in Figure 7
and the parameters chosen, the lambda control result and
the corresponding fuel injection time are shown in Figures
8(a) and 9(a), respectively. In order to show the advantage
of the RVMMPC, its control result is compared with other
two latest model predictive controllers, decremental LS-SVM
model predictive controller (DLSSVMMPC) and DRNN
model predictive controller (DRNNMPC), as well as the
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TABLE 2: Training and updating time of different lambda models.
Lambda model Training time (s) Average updating time (s) Cumulative updating time (s)
RM*(x) 1.52 0.08 0.71
DM*(x) 2.02 0.52 4.70
NN*(x) 3.52 0.92 8.27

PI control algorithm used in the existing automotive ECU.
The engine lambda models used in the DLSSVMMPC and
DRNNMPC are the models mentioned in Section 4.2. The
parameters of nonlinear optimization for the DLSSVMMPC,
and DRNNMPC were the same as those of RVMMPC.
The PI gains of the PI controller were obtained by the
Ziegler-Nichols method. The lambda control results and
the corresponding fuel injection time of the DLSSVMMPC,
DRNNMPC, and PI controller are shown in Figures 8(b)-
8(d) and 9(b)-9(d), respectively.

Figure 8(a) shows that the RVMMPC can control the
lambda to follow the target lambda with the smallest tracking
error and overshoot among all the controllers. The control
performances of the four controllers are shown in Table 3. As
the range of lambda for combustible mixture is very narrow,
logarithmic mean absolute error is chosen as the logarithmic

tracking error (LTE) to evaluate the tracking ability of the
controllers and is defined by

T
LTE = log{;zwzy,(t)}], (20)
t=1
where ¢ is time step, T is the total number of time step, y;
is the actual lambda at each time step, and y,(t) is the corre-
sponding target lambda at each time step. Table 3 reveals that
the LTE of the RVMMPC outperforms the DLSSVMMPC,
DRNNMPC and PI controller by approximately 5%, 8%, and
38%, respectively.

5.3. Pilot Test 2: System Robustness. In pilot test 2, the
test cycle is shown in Figure 10 where the throttle position
changes from 0 to 50% throttle. This change can be viewed
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as a disturbance. In this test, the lambda value is needed
to control within the +5% bounds of the stoichiometric
value (1.0). After choosing the sampling time to be 0.005s,
the effectiveness of the RVMMPC can be examined. The
parameters of the optimizer were chosen as Ny = 1, N, =
10, p = 0.5, and N,, = 3 again. The lambda control result
and the fuel injection time of the RVMMPC are shown
in Figures 11(a) and 12(a), respectively. Similar to pilot
test 1, the control result is compared with the two model
predictive controllers, DLSSVMMPC and DRNNMPC, as
well as typical PI controller. The control results and the
corresponding fuel injection time of the DLSSVMMPC,
DRNNMPC, and PI controller are shown in Figures 11(b)—
11(d) and 12(b)-12(d), respectively. Figure 11(a) shows that
the RVMMPC can regulate the lambda to the target lambda
with the smallest deviation (i.e., minimum LTE) in the steady
state among all the controllers. Moreover, the RVMMPC
can also achieve the smallest overshoot in the transient state
among all the controllers. These results show the superior
robustness of the RVMMPC. The control performances of
the four controllers are shown in Table 4, and the control
performance of the RVMMPC in terms of LTE is superior
to the DLSSVMMPC, DRNNMPC, and PI controller by 3%,
6%, and 35%, respectively.

5.4. Pilot Test 3: Online Update Ability. In the pervious two
tests, the “bypass air valve” of the test engine is 60% opening.
In order to test the update ability of the RVMMPC, the

“bypass air valve” was set from 60% to 30%. It is equivalent
to the clogging of the engine intake filter as the engine
aging. Normally, the lambda value must decrease under
the same throttle position as lack of intake air. The testing
procedure and the parameter setting are exactly the same
as those in pilot test 2 except the change of the “bypass
air valve” position. The variation of throttle position in
the test cycle is shown in Figure 13. The lambda control
result and the fuel injection time of the RVMMPC are
shown in Figures 14(a) and 15(a), respectively. Similar to
pilot tests 1 and 2, the control result is compared with
the two model predictive controllers, DLSSVMMPC and
DRNNMPC, as well as typical PI controller. The control
results and the corresponding fuel injection time of the
DLSSVMMPC, DRNNMPC and PI controller are shown in
Figures 14(b)-14(d) and 15(b)-15(d) respectively. Figures
14(a)-14(d) depict the lambda values decrease after changing
the position of the “bypass air valve” due to fuel rich. Figures
14(a)-14(c) illustrate that the three controllers, RVMMPC,
DLSSVMMPC, and DRNNMPC, can regulate the lambda
with obviously less deviation from the stoichiometric value
and overshoot than that of the PI controller because the
engine lambda model can be self-updated for any changes in
engine condition. The control performances of the four con-
trollers are shown in Table 5, and the control performance
of the RVMMPC in terms of LTE outperforms the DLSSVM,
DRNNMPC, and PI controller by approximately 6%, 10%,
and 62%, respectively. This promising result indicates that
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TasLE 3: Control performance of pilot test 1 of different controllers.
Controller LTE Improvement in LTE (%) Maximum Improvement in maximum

overshoot overshoot (%)

RVMMPC 2.1328 — 0.0580 —
DLSSVMMPC 2.0317 4.98* 0.0720 19.442
DRNNMPC 1.9665 8.46° 0.0890 34.83P
PI 1.5485 37.73¢ 0.1500 61.33¢
*RVMMPC over DLSSVMMPC.
YRVMMPC over DRNNMPC.
‘RVMMPC over PI.

TaBLE 4: Control performance of pilot test 2 of different controllers.

. Maximum Improvement in maximum
0,

Controller LTE Improvement in LTE (%) overshoot overshoot (%)
RVMMPC 2.1699 — 0.0490 —
DLSSVMMPC 2.1158 2.56* 0.0570 14.04%
DRNNMPC 2.0523 5.73% 0.0650 24.62°
PI 1.6092 34.84¢ 0.1470 66.67°¢
*RVMMPC over DLSSVMMPC.
PRVMMPC over DRNNMPC.
‘RVMMPC over PI.

TasLe 5: Control performance of pilot test 3 of different controllers.
Controller LTE Improvement in LTE (%) Maximum Improvement in maximum

overshoot overshoot (%)

RVMMPC 2.0042 — 0.0900 —
DLSSVMMPC 1.8965 5.76* 0.1070 15.89*
DRNNMPC 1.8274 9.67° 0.1090 17.43b
PI 1.2386 61.81¢ 0.2220 59.46¢
“RVMMPC over DLSSVMMPC.
bRVMMPC over DRNNMPC.
‘RVMMPC over PI.

the RVMMPC can regulate air ratio very well even the engine
ages and undergoes external disturbance simultaneously.

5.5. Discussion of Results. All the experimental results
show that the overall lambda control performance of the
RVMMPC is better than those of DLSSVMMPC, DRN-
NMPC, and conventional PI controller. There are two
important factors affecting the control performance of the
model predictive controllers which are the lambda model
accuracy, and computational time. As presented in Sections
2.1 and 4.2, the sparseness, model accuracy and model
updating time of RVM are better than those of DLSSVM and
DRNN. Therefore, the model accuracy, and computational
time of the RVMMPC is the best among the three controllers.
Overall, the RVMMPC 1is the most suitable method for
engine air-ratio control. Although Tables 3 to 5 show that
the logarithmic tracking errors of the RVMMPC have a
small improvement only, and the lambda is a very delicate
value, a small change can result in a big change of engine
performance, so the LTE is not very large. For instance, the air

ratio is changed from 1 to 1.05; an increment of 0.05 results
in changing from the best emission performance to the best
brake-specific fuel consumption. Besides, [2, 3] stated that
if AFR is 1% lower than its stoichiometric ratio, CO and
HC emissions are significantly increased. An AFR that is 1%
higher than the stoichiometric ratio produces more NOy, up
to 50%. As a result, the actual improvement achieved by the
RVMMPC is very significant.

6. Conclusions

This research is the first attempt at developing RVMMPC
for engine air-ratio control. This study is also the first to
extend DLSSVM to MPC for engine air-ratio control. The
RVM is trained by sequential learning algorithm and real
engine data, which can let the engine lambda model update
continually so as to maintain the lambda model accuracy
for any changes in engine performance as the engine aging
or fair user modification on it. With the highly accurate
engine lambda model, the new MPC strategy can perform
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lambda control effectively. The proposed intelligent control
algorithm was successfully implemented and tested on a
real automotive engine, whereas many previous researches
were simulation tests only. Experimental results show that
the lambda control performance of the RVMMPC is better
than of DLSSVMMPC, DRNNMPC and conventional PI
controller. Tables 3 to 5 reveal that the RVMMPC can
effectively reduce the lambda deviation and overshoot from
target lambda value up to 62% and 67%, respectively. Thus,
the RVMMPC is a potential control scheme to replace
conventional PI controller in the automotive ECU for engine
lambda control. In the future, some advanced optimization
algorithms for the RVMMPC and system stability will be
studied.

Acknowledgments

This work is supported by the University of Macau
Research Grant, Grant no. MYRG149(Y1-L2)-FST11-WPK.
The authors would also like to thank the support from Mr.
Adrian Kowalski.

References

[1] W. H. Course and D. L. Anglin, Automotive Mechanics,
McGraw-Hill, New York, NY, USA, 10th edition, 1993.

[2] C. Manzie, M. Palaniswami, and H. Watson, “Gaussian
networks for fuel injection control,” Journal of Automobile
Engineering, vol. 215, no. D8, pp. 1053—1068, 2001.

[3] C. Manzie, M. Palaniswami, D. Ralph, H. Watson, and X. Yij,
“Model predictive control of a fuel injection system with a
radial basis function network observer,” Journal of Dynamic
Systems, Measurement and Control, vol. 124, no. 4, pp. 648—
658, 2002.

[4] S. W. Wang and D. L. Yu, “A new development of internal
combustion engine air-fuel ratio control with second-order
sliding mode,” Journal of Dynamic Systems, Measurement and
Control, vol. 129, no. 6, pp. 757-766, 2007.

[5] Y. J. Zhai and D. L. Yu, “Radial-basis-function-based
feedforward-feedback control for air-fuel ratio of spark igni-
tion engines,” Proceedings of the Institution of Mechanical
Engineers D, vol. 222, no. 3, pp. 415-428, 2008.

[6] S.W.Wang, D.L.Yu,]J. B. Gomm, G. F. Page, and S. S. Douglas,
“Adaptive neural network model based predictive control
for air-fuel ratio of SI engines,” Engineering Applications of
Artificial Intelligence, vol. 19, no. 2, pp. 189-200, 2006.

[7] Y.J. Zhaiand D. L. Yu, “Neural network model-based automo-
tive engine air/fuel ratio control and robustness evaluation,”
Engineering Applications of Artificial Intelligence, vol. 22, no. 2,
pp. 171-180, 2009.

[8] Y. J. Zhai, D. W. Yu, H. Y. Guo, and D. L. Yu, “Robust air/fuel
ratio control with adaptive DRNN model and AD tuning,”
Engineering Applications of Artificial Intelligence, vol. 23, no. 2,
pp. 283-289, 2010.

[9]1 G. Y. Li, Application of Intelligent Control and MATLAB
to Electronically Controlled Engines, Publishing House of
Electronics Industry, 2007.

[10] P. K. Wong, L. M. Tam, K. Li, and C. M. Vong, “Engine idle-
speed system modelling and control optimization using arti-
ficial intelligence,” Proceedings of the Institution of Mechanical
Engineers, vol. 224, no. D1, pp. 55-72, 2010.

15

[11] J. Suykens, J. De Brabanter, L. Lukas, and L. Vandewalle, Least
Squares Support Vector Machines, World Scientific Press, 1st
edition, 2002.

[12] J. Valyon and G. A. Horvath, “Sparse least squares support
vector machine classifier,” in Proceedings of the IEEE Interna-
tional Joint Conference on Neural Networks, vol. 1, pp. 543-548,
Budapest, Hungary, July 2004.

[13] C.M. Vong, P. K. Wong, and Y. P. Li, “Prediction of automotive
engine power and torque using least squares support vector
machines and Bayesian inference,” Engineering Applications of
Artificial Intelligence, vol. 19, no. 3, pp. 277-287, 2006.

[14] P. K. Wong, C. M. Vong, L. M. Tam, and K. Li, “Data prepro-
cessing and modelling of electronically-controlled automotive
engine power performance using kernel principal components
analysis and least squares support vector machines,” Interna-
tional Journal of Vehicle Systems Modelling and Testing, vol. 3,
no. 4, pp. 312-330, 2008.

[15] T. Quan, X. Liu, and Q. Liu, “Weighted least squares support
vector machine local region method for nonlinear time series
prediction,” Applied Soft Computing Journal, vol. 10, no. 2, pp.
562-566, 2010.

[16] X. Wang, H. Zhang, C. Zhang, X. Cai, J. Wang, and J.
Wang, “Prediction of chaotic time series using LS-SVM with
automatic parameter selection,” in Proceedings of the 6th
International Conference on Parallel and Distributed Comput-
ing, Applications and Technologies (PDCAT °05), pp. 962-965,
Dalian, China, December 2005.

[17] Z. Shi and M. Han, “Support vector echo-state machine for
chaotic time-series prediction,” IEEE Transactions on Neural
Networks, vol. 18, no. 2, pp. 359-372, 2007.

[18] P. K. Wong, H. C. Wong, and C. M. Vong, “Online time-
sequence incremental and decremental least squares support
vector machines for engine air-ratio prediction,” International
Journal of Engine Research, vol. 13, no. 1, pp. 28—40, 2011.

[19] M. E. Tipping and A. C. Faul, “Fast marginal likelihood
maximisation for sparse bayesian method,” in Proceedings of
the 9th International Workshop on Artificail Intelligence and
Statistics, Key West, Fla, USA, January 2003.

[20] Rototest Research Institute, “Performance measurements on
chassis dynamometers,” 2005, http://www.rototest.com .

[21] A. C. Faul and M. E. Tipping, “Analysis of sparse Bayesian
learning,” Advances in Neural Information Processing Systems,
vol. 14, pp. 383-389, 2002.

[22] T. R. Chandrupatla, “An efficient quadratic fit—sectioning
algorithm for minimization without derivatives,” Computer
Methods in Applied Mechanics and Engineering, vol. 152, no.
1-2, pp. 211-217, 1998.



- i

/> . =
= &

Advances in

Civil Engineering

Journal of

Robatics

Advances in
OptoElectronics

International Journal of

Chemical Engineering

The Scientific
WQrId Journal

International Journal of

Rotating
Machinery

Journal of

Sensors

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Y :-
.

VLSI Design

‘.
.

Internatio Urna
Antennas and
Propagation

Modelling &
Simulation
in Engineering

International Journal of
Navigation and
Observation

e

Active and Passive
Electronic Components

Shock and Vibration

International Journal of

Distributed
Sensor Networks

Journal of
Control Science
and Engineering

Journal of
Electrical and Computer
Engineering

International Journal of

Aerospace
Engineering



