3 research outputs found

    Hydrogen bond directed molecular recognition in water in a strapped-porphyrin-cyclodextrin assembly

    Get PDF
    A water soluble, phenanthroline-strapped zinc porphyrin bearing four arylsulfonate groups formed a stable host–guest complex with two per-O-methylated β-cyclodextrin cavities. In the host–guest assembly, the zinc porphyrin was capable of binding imidazole within the cavity between the zinc(II) ion and the phenanthroline strap in an aqueous medium. The formation of a hydrogen bond between the imidazole NH and the nitrogen atoms of the phenanthroline was an essential element of the binding event, as shown by comparative binding studies with a non-strapped tetrasulfonated zinc porphyrin and with N-methylimidazole. This hydrogen bonding in an aqueous medium was possible due to the protected hydrophobic environment created by the cyclodextrins around the phenanthroline strap. This type of binding event may provide a biomimetic approach to study water soluble heme protein models

    Light triggers molecular shuttling in rotaxanes: control over proximity and charge recombination

    Get PDF
    We present the synthesis of novel rotaxanes based on mechanically interlocked porphyrins and fullerene and their advanced investigations by means of photophysical measurements. To this end, a fullerene-capped dumbbell-type axle containing a central triazole was threaded through strapped (metallo)porphyrins—either a free-base or a zinc porphyrin. Femtosecond-resolved transient absorption measurements revealed charge-separation between the porphyrin and fullerene upon light excitation. Solvent polarity and solvent coordination effects induced molecular motion of the rotaxanes upon charge separation and enabled, for the first time, subtle control over the charge recombination by enabling and controlling the directionality of shuttling
    corecore